研究简报

一种1,1-二氯烯烃化合物的新合成方法

  • 任新锋 ,
  • 宋小平 ,
  • 马影超 ,
  • 李亚
展开
  • a 海南师范大学 省部共建-热带药用植物化学教育部重点实验室 海口 570100;
    b 上海工程技术大学化学化工学院 上海 201620

收稿日期: 2019-10-25

  修回日期: 2019-12-08

  网络出版日期: 2020-01-03

基金资助

海南师范大学省部共建-热带药用植物化学教育部重点实验室开放基金(No.2013-6)资助项目.

Method for the Synthesis of 1,1-Dichloroalkenes

  • Ren Xinfeng ,
  • Song Xiaoping ,
  • Ma Yingchao ,
  • Li Ya
Expand
  • a Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Haikou 570100;
    b College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620

Received date: 2019-10-25

  Revised date: 2019-12-08

  Online published: 2020-01-03

Supported by

Project supported by the Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University (No. 2013-6).

摘要

1,1-二氯烯烃结构存在于许多天然产物中,同时也是一类重要的合成中间体,广泛应用于炔烃、卤代炔烃以及芳烃化合物的合成.报道了一个新的1,1-二氯烯烃化试剂:二氯甲基(2-吡啶基)砜.以叔丁醇钾作为碱,二氯甲基(2-吡啶基)砜与芳香醛顺利反应,以良好的产率制备得到了1,1-二氯烯烃化合物.该方法实验操作简便、试剂易得且纯化方便.

本文引用格式

任新锋 , 宋小平 , 马影超 , 李亚 . 一种1,1-二氯烯烃化合物的新合成方法[J]. 有机化学, 2020 , 40(5) : 1388 -1393 . DOI: 10.6023/cjoc201910030

Abstract

The 1,1-dichloroalkene structural unit is found in many natural products. 1,1-Dichloroalkenes are important intermediates, which have been widely used in the synthesis of alkynes, halogenated acetylenes and aromatic compounds. In this paper, a new dichloroolefinating reagent, dichloromethyl 2-pyridyl sulfone, was reported. 1,1-Dichloroalkenes can be conveniently obtained from the reaction of dichloromethyl 2-pyridyl sulfone with aromatic aldehydes using t-BuOK as base. This method has the advantage of operational simplicity, usage of easily available reagents and easy purification, which may find applications in organic synthesis.

参考文献

[1] Schmidt, W.; Schulze, T. M.; Brasse, G.; Nagrodzka, E.; Maczka, M.; Zettel, J.; Jones, P. G.; Grunenberg, J.; Hilker, M.; Trauer- Kizilelma, U.; Braun, U.; Schulz, S. Angew. Chem., Int. Ed. 2015, 54(26), 7698.
[2] (a) Vinczer, P.; Struhar, S.; Novak, L.; Szantay, C. Tetrahedron Lett. 1992, 33(5), 683.
(b) Yadav, J. S.; Prahlad, V.; Chander, M. C. J. Chem. Soc., Chem. Commun. 1993, (2), 137.
(c) McIntosh, M. L.; Johnston, R. C.; Pattawong, O.; Ashburn, B. O.; Naffziger, M. R.; Cheong, P. H.; Carter, R. G.. J. Org. Chem. 2012, 77(2), 1101.
(d) Yan, H.; Lu, L. H.; Sun, P.; Zhu, Y.; Yang, H. L.; Liu, D. F.; Rong, G. W.; Mao, J. C. RSC Adv. 2013, 3(2), 377.
(e) Zhu, Y.; Sun, P.; Yang, H. L.; Lu, L. H.; Yan, H.; Creus, M.; Mao, J. C. Eur. J. Org. Chem. 2012, (25), 4831.
(f) Zhou, Z. L.; Fang, T.; Tang, R. Y.; Zhang, X. G.; Deng, C. L.; Synlett 2014, 25(2), 255.
(g) Ackermann, L.; Kornhaass, C.; Zhu, Y. J.; Org. Lett. 2012, 14(7), 1824.
[3] Cantet, A.; Gesson, J.; Renoux, B.; Jouannetaud, M. Tetrahedron Lett. 2007, 48(30), 5255.
[4] (a) Speziale, A. J.; Ratts, K. W. J. Am. Chem. Soc. 1962, 84(5), 854.
(b) Seyferth, D.; Marmor, R. S. J. Organomet. Chem. 1973, 59, 237.
(c) Rabinowitz, R.; Marcus, R. J. Am. Chem. Soc. 1962, 84(7), 1312.
(d) Burton, D. J.; Greenwald, J. R. Tetrahedron Lett. 1967, 8(16), 1535.
(e) Merz, A. Angew. Chem. 1977, 89(1), 54.
(f) Gajewski, R. P.; Jackson, J. L.; Jones, N. D.; Swartzendruber, J. K.; Deeter, J. B. J. Org. Chem. 1989, 54(14), 3311.
(g) Wang, Z.; Campagna, S.; Xu, G.; Pierce, M. E.; Fortunak, J. M.; Confalone, P. N. Tetrahedron Lett. 2000, 41(21), 4007.
(h) Tanaka, H.; Yamashita, S.; Yamanoue, M.; Torii, S. J. Org. Chem. 1989, 54(2), 444.
(i) Krabbenhoft, H. O. J. Org. Chem. 1978, 43(7), 1305.
(j) Aggarwal, V. K.; Mereu, A. J. Org. Chem. 2000, 65(21), 7211.
(k) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13(36), 3769.
[5] Chien, C. T.; Tsai, C. C.; Tsai, C. H.; Chang, T. Y.; Tsai, P. K.; Wang, Y. C.; Yan, T. H. J. Org. Chem. 2006, 71(11), 4324.
[6] Newman, S. G.; Brian, C. S.; Perez, D.; Lautens, M. Synthesis 2011, (2), 342.
[7] (a) Nenajdenko, V. G.; Vasil'kov, A. Y.; Goldberg, A. A.; Muzalevskiy, V. M.; Naumkin, A. V.; Podshibikhin, V. L.; Shastin, A. V.; Balenkova, E. S. Mendeleev Commun. 2010, 20(4), 200.
(b) Nenajdenko, V. G.; Shastin, A. V.; Korotchenko, V. N.; Balenkova, E. S. Russ. Chem. Bull. 2001, 50(6), 1047.
[8] (a) Li, D. S.; Li, Y.; Chen, Z. Q.; Shang, H. Q.; Li, H. S.; Ren, X. F. RSC Adv. 2014, 4(27), 14254.
(b) Li, Y.; Huang, H. J.; Wang, Z.; Yang, F.; Li, D. S.; Qin, B.; Ren, X. F. RSC Adv. 2014, 4(2), 969.
[9] Zhao, Y. C.; Huang, W. Z.; Zhu, L. G.; Hu, J. B. Org. Lett. 2010, 12(7), 1444.
[10] (a) Kamiyama, T.; Enomoto, S.; Inoue, M. Chem. Pharm. Bull. 1988, 36(7), 2652.
(b) Middelbos, W.; Strating, J.; Zwanenburg, B. Tetrahedron Lett. 1971, 12(4), 351.
(c) Chen, Z. Q.; Bolat, H.; Wan, X.; Li, Y. Acta Crystallogr. 2014, E70, o1272.
[11] Broquet-Borgel, C. Ann. Chim. 1958, 204.
[12] Ram, N. R.; Tittal, R. K. Tetrahedron Lett. 2014, 55(31), 4342.
[13] Takano, S.; Ogasawara, K. Synth. Commun. 1976, 6(5), 349.
[14] Shastin, A. V.; Korotchenko, V. N.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56(35), 6557.
[15] Liron, F.; Fosse, C.; Pernolet, A.; Roulland, E. J. Org. Chem. 2007, 72(6), 2220.
文章导航

/