综述与进展

1,3-氨基醇的合成研究进展

  • 王伟 ,
  • 胡燚 ,
  • 林睿褀 ,
  • 吴恒 ,
  • 童启 ,
  • 汪连生 ,
  • 肖祖峰 ,
  • 朱磊
展开
  • 湖北工程学院化学与材料科学学院 湖北孝感 432000

收稿日期: 2019-11-06

  修回日期: 2019-12-11

  网络出版日期: 2020-01-21

基金资助

湖北省教育厅中青年人才(No.Q20172705)、国家自然科学基金(No.21774029)、湖北省高等学校优秀中青年科技创新团队计划(No.T201816)资助项目.

Progress on the Synthesis of 1,3-Amino Alcohol

  • Wang Wei ,
  • Hu Yi ,
  • Lin Ruiqi ,
  • Wu Heng ,
  • Tong Qi ,
  • Wang Liansheng ,
  • Xiao Zufeng ,
  • Zhu Lei
Expand
  • School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000

Received date: 2019-11-06

  Revised date: 2019-12-11

  Online published: 2020-01-21

Supported by

Project supported by the Hubei Provincial Education Department Young and Middle-aged Talents Project (No. Q20172705), the National Natural Science Foundation of China (No. 21774029), and the Hubei University Excellent Young and Middle-aged Science and Technology Innovation Team Project (No. T201816).

摘要

具有光学活性的1,3-氨基醇既是有机化学中重要的合成砌块,也是众多生物活性分子的核心结构,因此不对称合成1,3-氨基醇一直是合成领域的一个热点.从aldol缩合或azo-aldol缩合合成,过渡金属催化C—H键活化、氨化合成,氮杂环的开环-加成合成,[3+2]偶极环加成反应等方面综述了近年来所发展的1,3-氨基醇的合成方法及进展.

本文引用格式

王伟 , 胡燚 , 林睿褀 , 吴恒 , 童启 , 汪连生 , 肖祖峰 , 朱磊 . 1,3-氨基醇的合成研究进展[J]. 有机化学, 2020 , 40(5) : 1129 -1149 . DOI: 10.6023/cjoc201911011

Abstract

Optically pure 1,3-amino alcohol is not only the important synthon in organic synthesis, but also the core structure of numerous bioactive molecule. As a result, the formation of 1,3-amino alcohols occupies a hot resarch topic in asymmetric synthesis. This review symmarizes several types of frequently-used methods and progress on synthesizing 1,3-amino alcohols:aldol or azo-aldol condensation synthesis, transition metal catalyzed C-H activation and amination synthesis, ring-opening and addition of azocyclic compounds, and[3+2] dipolar-cycloaddition reaction etc.

参考文献

[1] Bates, R. W.; Sa-Ei, K. Tetrahedron 2002, 58, 5957.
[2] Lait, S. M.; Rankic, D. A.; Keay, B. A. Chem. Rev. 2007, 107, 767.
[3] (a) Davis, F. A.; Gaspari, P. M.; Nolt, B. M.; Xu, P. J. Org. Chem. 2008, 73, 9619.
(b) Shiro, Y.; Kato, K.; Fujii, M.; Ida, Y.; Akita, H. Tetrahedron 2006, 62, 8687.
(c) Aschwanden, P.; Kværnø, L.; Geisser, R. W.; Kleinbeck, F.; Carreira, E. M. Org. Lett. 2005, 7, 5741.
(d) Keck, G. E.; Truong, A. P. Org. Lett. 2002, 4, 3131.
[4] Yao, C.-Z.; Xiao, Z.-F.; Ning, X.-S.; Liu, J.; Zhang, X.-W.; Kang, Y.-B. Org. Lett., 2014, 16, 5824.
[5] Loh, T.-K.; Huang, J.-M.; Goh, S.-H.; Vittal, J. J. Org. Lett. 2000, 2, 1291.
[6] (a) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2002, 124, 6518.
(b) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2003, 125, 11276.
[7] Mackey, P.; Cano, R.; Foley, V. M.; McGlacken, G. P. Org. Synth. 2017, 94, 259.
[8] (a) Kennedy, A.; Nelson, A.; Perry, A. Synlett 2004, 967.
(b) Fjelbey, K.; Svenstrup, N.; Püschl, A. Synthesis 2015, 47, 3231.
[9] Enders, D.; Moser, M.; Geibel, G.; Laufer, M. C. Synthesis 2004, 2040.
[10] List, B. J. Am. Chem. Soc. 2000, 122, 9336.
[11] (a) Cόrdova, A. Synlett 2003, 1651.
(b) Cόrdova, A. Chem. Eur. J. 2004, 10, 1987.
[12] Westermann, B.; Neuhaus, C. Angew. Chem., Int. Ed. 2005, 44, 4077.
[13] Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed. 2005, 44, 4079.
[14] Fustero, S.; Jiménez, D.; Moscardó, J.; Catalán, S.; Pozo, C. Org. Lett. 2007, 9, 5283.
[15] Jha, V.; Kondekar, N. B.; Kumar, P. Org. Lett. 2010, 12, 2762.
[16] Millet, R.; Träff, A. M.; Petrus, M. L.; Bäckvall, J.-E. J. Am. Chem. Soc. 2010, 132, 15182.
[17] Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 9328.
[18] Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
[19] Frías, M.; Carrasco, A. C.; Fraile, A.; Alemán, J. Chem.-Eur. J. 2017, 23, 3117.
[20] Josephsohn, N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 3734.
[21] Matsunaga, S.; Yoshida, T.; Mornoto, H.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777.
[22] Trost, B. M.; Hung, C.-I.; Saget, T.; Gnanamani, E. Nat. Catal. 2018, 1, 523.
[23] (a) Espino, C. G.; When, P. M.; Chow, J.; Bois, J. D. J. Am. Chem. Soc. 2001, 123, 6935.
(b) Fiori, K. W; Espino, C. G.; Brodsky, B. H.; Bois, J. D. Tetrahedron 2009, 65, 3042.
[24] Fiori, K. W.; Fleming, J. J.; Bois, J. D. Angew Chem., Int. Ed. 2004, 43, 4349.
[25] Alderson, J. M.; Schomaker, J. M. Chem. Eur. J. 2017, 23, 8571.
[26] Zalatan, D. N.; Bois, J. D. J. Am. Chem. Soc. 2008, 130, 9220.
[27] Spreider, P. A.; Haydl, A.M.; Heinrich, M.; Breit, B. Angew. Chem. 2016, 128, 15798.
[28] Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707.
[29] Qi, X.-B.; Rice, G. T.; Lall, M. S.; Plummer, M. S.; White, M. C. Tetrahedron 2010, 66, 4816.
[30] Nahra, E.; Liron, F.; Prestat, G.; Mealli, C.; Messaoudi, A.; Poli, G. Chem. Eur. J. 2009, 15, 11078.
[31] Xie, Y.-Z., Yu, K.; Gu, Z.-H. J. Org. Chem. 2014, 79, 1289.
[32] Ma, R.; Young, J.; Promontorio, R.; Dannheim, F. M.; Pattillo, C. C.; White, M. C. J. Am. Chem. Soc. 2019, 141, 9468.
[33] Paradine, S. M.; White, M. C. J. Am. Chem. Soc. 2012, 134, 2036.
[34] Ohno, H.; Hamaguchi, H.; Tanaka, T. J. Org. Chem. 2001, 66, 1867.
[35] Takemoto, Y.; Anzai, M.; Yanada, R.; Fujii, N.; Ohno, H.; Ibuka, T. Tetrahedron Lett. 2001, 42, 1725.
[36] Zhang, Y.-Q.; Bohle, F.; Bleith, R.; Schnakenburg, G.; Grimme, S.; Gansäuer, A. Angew. Chem. 2018, 130, 13716.
[37] Liu, J.; Wang, C. ACS Catal. 2020, 10, 556.
[38] Ghorai, M. K.; Das, K.; Kumar, A. Tetrahedron Lett. 2007, 48, 4373.
[39] Singh, A.; Sharma, B.; Sachdeva, D.; Mehra, V.; Singh, P.; Kumar, V. ChemistrySelect 2018, 3, 4764.
[40] Yao, C.-Z.; Xiao, Z.-F.; Liu, J.; Ning, X.-S.; Kang, Y.-B. Org. Lett. 2014, 16, 2498.
[41] Yao, C.-Z.; Xiao, Z.-F.; Ning, X.-S.; Liu, J.; Zhang, X.-W.; Kang, Y.-B. Org. Lett. 2014, 16, 5824.
[42] Xiao, Z.-F.; Yao, C.-Z.; Kang, Y.-B. Org. Lett. 2014, 16, 6512.
[43] Tiecco, M.; Testaferri, L.; Marini, F.; Sternativo, S.; Santi, C.; Bagnoli, L.; Temperini, A. Tetrahedron: Asymmetry 2001, 12, 3053.
[44] (a) Gais, H.-J.; Loo, R.; Das, P.; Raabe, G. Tetrahedron Lett. 2000, 41, 2851.
(b) Gais, Hans-Joachim; Loo, R.; Roder, D.; Das, P.; Raabe, G. Eur. J. Org. Chem. 2003, 1500.
[45] Murai, T.; Sano, H.; kawai, H.; Aso, H.; Shibahara, F. J. Org. Chem. 2005, 70, 8148.
[46] Daniel, P. E.; Weber, A. E.; Malcolmson, S. J. Org. Lett. 2017, 19, 3490.
[47] Geng, H.; Zhang W.; Chen, J.; Hou, G.; Zhou, L.; Zou, Y.; Wu, W.; Zhang, X. Angew. Chem., Int. Ed. 2009, 48, 6052.
[48] Xi, Y.; Butcher, T. W.; Zhang, J.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 776.
[49] Ying, J.; Pu, L. J. Org. Chem. 2016, 81, 8135.
文章导航

/