综述与进展

光、电催化硫氰基化反应研究进展

  • 张龙菲 ,
  • 牛聪 ,
  • 杨晓婷 ,
  • 秦宏云 ,
  • 杨建静 ,
  • 文江伟 ,
  • 王桦
展开
  • 曲阜师范大学化学与化工学院 山东曲阜 273165

收稿日期: 2019-12-09

  修回日期: 2020-01-09

  网络出版日期: 2020-01-21

基金资助

国家自然科学基金(Nos.21902083,21675099)、山东省重大自然科学基金(No.ZR2018ZC0129)、山东省省级大学生创新创业项目(No.S201910446044)以及曲阜师范大学科研启动基金(No.6132,6125)资助项目.

Recent Advances on the Photocatalytic and Electrocatalytic Thiocyanation Reactions

  • Zhang Longfei ,
  • Niu Cong ,
  • Yang Xiaoting ,
  • Qin Hongyun ,
  • Yang Jianjing ,
  • Wen Jiangwei ,
  • Wang Hua
Expand
  • Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165

Received date: 2019-12-09

  Revised date: 2020-01-09

  Online published: 2020-01-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21902083, 21675099), the Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2018ZC0129), the College Students Innovation and Entrepreneurship Training Project of Shandong Province (No. S201910446044) and the Qufu Normal University Research Startup Fund (Nos. 6132, 6125).

摘要

硫氰酸酯作为一种用途广泛的合成子,在医药、农药、材料等诸多领域中具有重要的应用价值.特别是,通过光、电催化硫氰基化反应的合成途径具有绿色、高效、安全等优势,在有机化学中得到广泛关注.重点介绍了一系列基于光、电催化的偶联/硫氰基化反应,期望为探究硫氰酸酯类化合物的绿色合成提供帮助.

关键词: 硫氰化; 光催化; 电催化

本文引用格式

张龙菲 , 牛聪 , 杨晓婷 , 秦宏云 , 杨建静 , 文江伟 , 王桦 . 光、电催化硫氰基化反应研究进展[J]. 有机化学, 2020 , 40(5) : 1117 -1128 . DOI: 10.6023/cjoc201912011

Abstract

Thiocyanate, as a versatile synthon, which has important application value in many fields such as pharmaceutical, pesticide and materials. The photocatalytic and electrocatalytic thiocyanation reactions have been widely concerned in organic chemistry due to the advantages of green, efficiency and safety. In this review, the cross-coupling/thiocyanation reactions based on the photocatalytic and electrocatalytic are described, which is expected to be helpful in exploring the green synthesis of thiocyanates compounds.

参考文献

[1] (a) Capon, R. J.; Skene, C.; Liu, E. H.-T.; Lacey, E.; Gill, J. H.; Heiland, K.; Friedel, T. J. Org. Chem. 2001, 66, 7765.
(b) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
(c) Elhalem, E.; Bailey, B. N.; Docampo, R.; Ujváry, I.; Szajnman, S. H.; Rodriguez, J. B. J. Med. Chem. 2002, 45, 3984.
(d) Kokorekin, V.; Terent'ev, A.; Ramenskaya, G.; Grammatikova, N.; Rodionova, G.; Ilovaiskii, A. Pharm. Chem. J. 2013, 47, 422.
(e) Yasman, Y.; Edrada, R. A.; Wray, V.; Proksch, P. J. Nat. Prod. 2003, 66, 1512.
[2] (a) Khalili, D. Chin. Chem. Lett. 2015, 26, 547.
(b) Zeng, Y.-F.; Tan, D.-H.; Chen, Y.; Lv, W.-X.; Liu, X.-G.; Li, Q.; Wang, H. Org. Chem. Front. 2015, 2, 1511.
(c) Guo, L.-N.; Gu, Y.-R.; Yang, H.; Hu, J. Org. Biomol. Chem. 2016, 14, 3098.
(d) Khalili, D. New J. Chem. 2016, 40, 2547.
(e) Chen, Q.; Lei, Y.; Wang, Y.; Wang, C.; Wang, Y.; Xu, Z.; Wang, H.; Wang, R. Org. Chem. Front. 2017, 4, 369.
(f) Ji, F.; Fan, Y.; Yang, R.; Yang, Y.; Yu, D.; Wang, M.; Li, Z. Asian J. Org. Chem. 2017, 6, 682.
(g) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2017, 359, 1208.
(h) Prieto, A.; Uzel, A.; Bouyssi, D.; Monteiro, N. Eur. J. Org. Chem. 2017, 2017, 4201.
(i) Chen, Y.; Wang, S.; Jiang, Q.; Cheng, C.; Xiao, X.; Zhu, G. J. Org. Chem. 2018, 83, 716.
(j) Khaikate, O.; Meesin, J.; Pohmakotr, M.; Reutrakul, V.; Leowanawat, P.; Soorukram, D.; Kuhakarn, C. Org. Biomol. Chem. 2018, 16, 8553.
(k) Qiu, J.; Wu, D.; Karmaker, P. G.; Yin, H.; Chen, F.-X. Org. Lett. 2018, 20, 1600.
(l) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.
(m) Dey, A.; Hajra, A. Adv. Synth. Catal. 2019, 361, 842.
(n) Noikham, M.; Yotphan, S. Eur. J. Org. Chem. 2019, 2019, 2759.
[3] Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494.
[4] Vekariya, R. H.; Patel, H. D. Synth. Commun. 2017, 47, 87.
[5] Qin, X.; Zhang, L.-Y.; Feng, G.-F.; Jin, C.-A. Chin. J. Org. Chem. 2019, 39, 287(in Chinese). (徐庆, 张连阳, 冯高峰, 金城安, 有机化学, 2019, 39, 287.)
[6] (a) Hartwig, J. F. Nature 2008, 455, 314.
(b) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156.
(c) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
(d) Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 4657.
(e) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
(f) Liu, Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667(in Chinese). (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667.)
(g) Mei, H.; Yin, Z.; Liu, J.; Sun, H.; Han, J. Chin. J. Chem. 2019, 37, 292.
(h) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338.
[7] Yadav, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2015, 56, 6696.
[8] Yuan, P.-F.; Zhang, Q.-B.; Jin, X.-L.; Lei, W.-L.; Wu, L.-Z.; Liu, Q. Green Chem. 2018, 20, 5464.
[9] Guy, R. G.; Thompson, J. J. Tetrahedron 1978, 34, 541.
[10] Chen, Y.-J.; He, Y.-H.; Guan, Z. Tetrahedron 2019, 75, 3053.
[11] Zhang, D.; Wang, H.; Bolm, C. Chem. Commun. 2018, 54, 5772.
[12] Gao, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 2243.
[13] Fan, W.; Yang, Q.; Xu, F.; Li, P. J. Org. Chem. 2014, 79, 10588.
[14] Wang, L.; Wang, C.; Liu, W.; Chen, Q.; He, M. Tetrahedron Lett. 2016, 57, 1771.
[15] Hosseini-Sarvari, M.; Hosseinpour, Z.; Koohgard, M. New J. Chem. 2018, 42, 19237.
[16] Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao, C.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80, 11073.
[17] Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2016, 47, 8275.
[18] Singh, M.; Yadav, A. K.; Yadav, L. D. S.; Singh, R. Synlett 2018, 29, 176.
[19] Chauhan, P.; Ritu, R.; Preeti, P.; Kumar, S.; Jain, N. Eur. J. Org. Chem. 2019, 2019, 4334.
[20] Tambe, S. D.; Jadhav, M. S.; Rohokale, R. S.; Kshirsagar, U. A. Eur. J. Org. Chem. 2018, 2018, 4867.
[21] Gullapalli, K.; Vijaykumar, S. Org. Biomol. Chem. 2019, 17, 2232.
[22] (a) Zhao, Y.; Wang, H.; Hou, X.; Hu, Y.; Lei, A.; Zhang, H.; Zhu, L. J. Am. Chem. Soc. 2006, 128, 15048.
(b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(c) Chen, M.; Zheng, X.; Li, W.; He, J.; Lei, A. J. Am. Chem. Soc. 2010, 132, 4101.
(d) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170.
(e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(f) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761.
(g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(h) He, C.; Guo, S.; Ke, J.; Hao, J.; Xu, H.; Chen, H.; Lei, A. J. Am. Chem. Soc. 2012, 134, 5766.
(i) Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
(j) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459.
(k) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138.
(l) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. J. Am. Chem. Soc. 2015, 137, 9273.
(m) Song, C.; Yi, H.; Dou, B.; Li, Y.; Singh, A. K.; Lei, A. Chem. Commun. 2017, 53, 3689.
(n) Song, C.; Dong, X.; Yi, H.; Chiang, C.-W.; Lei, A. ACS Catal. 2018, 8, 2195.
(o) Song, C.; Liu, K.; Dong, X.; Chiang, C.-W.; Lei, A. Synlett 2019, 30, 1149.
[23] Kang, L.-S.; Luo, M.-H.; Lam, C. M.; Hu, L.-M.; Little, R. D.; Zeng, C.-C. Green Chem. 2016, 18, 3767.
[24] Liang, S.; Zeng, C. C.; Tian, H.; Sun, B.; Ren, F. Adv. Synth. Catal. 2018, 360, 1444.
[25] De Klein, W. J. Electrochim. Acta 1973, 18, 413.
[26] Levy, A.; Becker, J. Y. Electrochim. Acta 2015, 178, 294.
[27] Gitkis, A.; Becker, J. Y. Electroanalysis 2016, 28, 2802.
[28] Wen, J.; Zhang, L.; Yang, X.; Niu, C.; Wang, S.; Wei, W.; Sun, X.; Yang, J.; Wang, H. Green Chem. 2019, 21, 3597.
[29] Krishnan, P.; Gurjar, V. G. Synth. Commun. 1992, 22, 2741.
[30] Krishnan, P.; Gurjar, V. G. J. Appl. Electrochem. 1995, 25, 792.
[31] Gitkis, A.; Becker, J. Y. J. Electroanal. Chem. 2006, 593, 29.
[32] Gitkis, A.; Becker, J. Y. Electrochim. Acta 2010, 55, 5854.
[33] (a) Nair, V.; George, T. G.; Nair, L. G.; Panicker, S. B. Tetrahedron Lett. 1999, 40, 1195.
(b) Chakrabarty, M.; Sarkar, S. Tetrahedron Lett. 2003, 44, 8131.
(c) Yadav, J.; Reddy, B.; Shubashree, S.; Sadashiv, K. Tetrahedron Lett. 2004, 45, 2951.
(d) Yadav, J.; Reddy, B.; Krishna, A.; Reddy, C. S.; Narsaiah, A. Synthesis 2005, 2005, 961.
(e) Pan, X.-Q.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2009, 50, 347.
(f) Akhlaghinia, B.; Pourali, A.-R.; Rahmani, M. Synth. Commun. 2012, 42, 1184.
(g) Khazaei, A.; Zolfigol, M. A.; Mokhlesi, M.; Panah, F. D.; Sajjadifar, S. Helv. Chim. Acta 2012, 95, 106.
[34] Fotouhi, L.; Nikoofar, K. Tetrahedron Lett. 2013, 54, 2903.
[35] Kokorekin, V. A.; Sigacheva, V. L.; Petrosyan, V. A. Tetrahedron Lett. 2014, 55, 4306.
[36] Zhang, X.; Wang, C.; Jiang, H.; Sun, L. RSC Adv. 2018, 8, 22042.
[37] Yaubasarova, R. R.; Kokorekin, V. A.; Ramenskaya, G. V.; Petrosyan, V. A. Mendeleev Commun. 2019, 29, 334.
[38] Sun, L.; Zhang, X.; Li, Z.; Ma, J.; Zeng, Z.; Jiang, H. Eur. J. Org. Chem. 2018, 2018, 4949.
[39] Kokorekin, V. A.; Yaubasarova, R. R.; Neverov, S. V.; Petrosyan, V. A. Mendeleev Commun. 2016, 5, 413.
[40] Kokorekin, V. A.; Yaubasarova, R. R.; Neverov, S. V.; Petrosyan, V. A. Eur. J. Org. Chem. 2019, 2019, 4233.
[41] Dyga, M.; Hayrapetyan, D.; Rit, R. K.; Gooßen, L. J. Adv. Synth. Catal. 2019, 361, 3548.
[42] Yang, S.-M.; He, T.-J.; Lin, D.-Z.; Huang, J.-M. Org. Lett. 2019, 21, 1958.
文章导航

/