研究简报

平面型d8和d10过渡金属配合物与葫芦[10]脲的识别研究

  • 胡智雄 ,
  • 孙冬冬 ,
  • 韩勰 ,
  • 刘思敏
展开
  • 武汉科技大学化学与化工学院 耐火材料与冶金国家重点实验室 武汉 430081

收稿日期: 2019-12-10

  修回日期: 2020-01-11

  网络出版日期: 2020-01-21

基金资助

国家自然科学基金(Nos.21871216,21901194,21472143)资助项目.

Molecular Recognition of Cucurbit[10]uril toward Planar d8 and d10 Transition Metal Complexes

  • Hu Zhixiong ,
  • Sun Dongdong ,
  • Han Xie ,
  • Liu Simin
Expand
  • State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081

Received date: 2019-12-10

  Revised date: 2020-01-11

  Online published: 2020-01-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21871216, 21901194, 21472143).

摘要

由于d8和d10过渡金属具有配位不饱和性,其独特的电子结构以及易形成金属-金属键使其表现出特殊的光物理化学特性.而发光小分子的光学性质可通过主客体相互作用进行调控.为进一步探索主客体作用对d8和d10过渡金属配合物光学性质的影响,选择了葫芦[n]脲(CB[n],n=5~8,10)大环主体家族中具有最大空腔的成员葫芦[10]脲(CB[10])作为主体,通过紫外、荧光、核磁和质谱等表征手段,研究了这类水溶性平面型过渡金属配合物进入主体空腔后的光物理性质的变化.研究表明,CB[10]的空腔可容纳多个Pt(II)配合物分子,通过增强客体分子间的π-π相互作用,拉近了金属原子之间的距离,从而使其在水相中表现出金属-金属相互作用的特性.Ir(III)配合物与CB[10]识别后,表现出激基缔合物的光谱特征.此外,水相中具有较强金属-金属相互作用的Rh(I)配合物在进入CB[10]空腔后,其金属-金属相互作用被破坏,可归因于1:1主客体配合物的形成.此研究将主客体化学引入到d8和d10金属的光物理特性调控中,将进一步拓展过渡金属配合物在更广领域的研究应用.

本文引用格式

胡智雄 , 孙冬冬 , 韩勰 , 刘思敏 . 平面型d8和d10过渡金属配合物与葫芦[10]脲的识别研究[J]. 有机化学, 2020 , 40(5) : 1361 -1366 . DOI: 10.6023/cjoc201912014

Abstract

Due to the coordination-unsaturation feature of d8 and d10 transition metals, their unique electronic structures and easy formation of metal-metal bonds make them exhibit special photophysical and photochemical properties. The optical properties of luminescent molecules can be regulated through host-guest interactions. In order to further explore the effect of host-guest interaction on the optical properties of d8 and d10 transition metal complexes, the member with the largest cavity in the macrocyclic family of cucurbit[n]uril (CB[n], n=5~8, 10)-CB[10] was selected as host. The changes in photophysical properties of such water-soluble planar transition metal complexes after entering the host cavity were studied by means of UV/Vis, fluorescence, 1H NMR and mass spectra. The results show that the cavity of CB[10] can accommodate multiple Pt(II) complex molecules. By enhancing the π-π interaction between guest molecules in the cavity of CB[10], the distance between metal atoms was shortened, leading the formation of metal-metal interactions in the water phase. Encapsulation of Ir(III) complex in CB[10] causes the formation of excimer. In addition, strong metal-metal interactions between Rh(I) complex molecules were weakened after the guest went into CB[10], which should be attributed to the formation of 1:1 host-guest complex. The introduction of host-guest chemistry in regulating photophysical properties of d8 and d10 metal complexes would further expand the application of transition metal complexes in a wider range of fields.

参考文献

[1] Kirk, A. D. Chem. Rev. 1999, 99, 1607.
[2] Welter, S.; Salluce, N.; Belser, P.; Groeneveld, M.; De Cola, L. Coord. Chem. Rev. 2005, 249, 1360.
[3] Bonnet, S.; Collin, J.-P.; Sauvage, J.-P. Inorg. Chem. 2007, 46, 10520.
[4] Mahmudov, K. T.; Kukushkin, V. Y.; Gurbanov, A. V.; Kinzhalov, M. A.; Boyarskiy, V. P.; da Silva, M. F. C. G.; Pombeiro, A. J. L. Coord. Chem. Rev. 2019, 384, 65.
[5] Fujita, M. Chem. Soc. Rev. 1998, 27, 417.
[6] Pluth, M. D.; Raymond, K. N. Chem. Soc. Rev. 2007, 36, 161.
[7] Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810.
[8] Lehn, J.-M. Angew. Chem., Int. Ed. 1988, 27, 89.
[9] Saalfrank, R. W.; Maid, H.; Scheurer, A. Angew. Chem., Int. Ed. 2008, 47, 8794.
[10] Badjić, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723.
[11] Yam, V. W.-W.; Au, V. K.; Leung, S. Y. Chem. Rev. 2015, 115, 7589.
[12] Jiang, B.; Zhang, J.; Ma, J. Q.; Zheng, W.; Chen, L. J.; Sun, B.; Li, C.; Hu, B. W.; Tan, H.; Li, X.; Yang, H. B. J. Am. Chem. Soc. 2016, 138, 738.
[13] Chen, L. J.; Yang, H. B. Acc. Chem. Res. 2018, 51, 2699.
[14] Yam, V. W.-W.; Wong, K. M.-C.; Zhu, N. J. Am. Chem. Soc. 2002, 124, 6506.
[15] Yu, C.; Chan, K. H.; Wong, K. M.; Yam, V. W.-W. Chem.-Eur. J. 2008, 14, 4577.
[16] Kwok, E. C.; Chan, M. Y.; Wong, K. M.; Lam, W. H.; Yam, V. W.-W. Chem.-Eur. J. 2010, 16, 12244.
[17] Tanaka, Y.; Wong, K. M.; Yam, V. W.-W. Angew. Chem., Int. Ed. 2013, 52, 14117.
[18] Kong, F. K.; Chan, A. K.; Ng, M.; Low, K. H.; Yam, V. W.-W. Angew. Chem., Int. Ed. 2017, 56, 15103.
[19] Sin-Yee Law, A.; Yeung, M. C.; Yam, V. W.-W. ACS Appl. Mater. Interfaces 2019, 11, 4799.
[20] Lu, W.; Chen, Y.; Roy, V. A.; Chui, S. S.; Che, C. M. Angew. Chem., Int. Ed. 2009, 48, 7621.
[21] Yuen, M. Y.; Roy, V. A.; Lu, W.; Kui, S. C.; Tong, G. S.; So, M. H.; Chui, S. S.; Muccini, M.; Ning, J. Q.; Xu, S. J.; Che, C. M. Angew. Chem., Int. Ed. 2008, 47, 9895.
[22] Zou, T.; Liu, J.; Lum, C. T.; Ma, C.; Chan, R. C.; Lok, C. N.; Kwok, W. M.; Che, C. M. Angew. Chem., Int. Ed. 2014, 53, 10119.
[23] Sun, C. Y.; To, W. P.; Hung, F. F.; Wang, X. L.; Su, Z. M.; Che, C. M. Chem. Sci. 2018, 9, 2357.
[24] Yang, Z.; Tian, Y.; Li, Z.; Ao, L.; Gao, Z.; Wang, F. Acta Polym. Sin. 2017, 48, 121(in Chinese). (杨支帅, 田玉奎, 李子健, 敖雷, 高宗春, 汪峰, 高分子学报, 2017, 48, 121.)
[25] Li, Z.; Han, Y.; Gao, Z.; Wang, F. ACS Catal. 2017, 7, 4676.
[26] Zhang, X.; Ao, L.; Han, Y.; Gao, Z.; Wang, F. Chem. Commun. 2018, 54, 1754.
[27] Gao, Z.; Li, Z.; Gao, Z.; Wang, F. Nanoscale 2018, 10, 14005.
[28] Li, Z.; Han, Y.; Wang, F. Nat. Commum. 2019, 10. 3735
[29] Han, B.; Liu, Y. Chin. J. Org. Chem. 2003, 23, 139(in Chinese). (韩宝航, 刘育, 有机化学, 2003, 23, 139.)
[30] Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Chem. Rev. 2015, 115, 12320.
[31] Gong, W.-J.; Zhao, Z.-Y.; Liu, S.-M. Prog. Chem. 2016, 28, 1732(in Chinese). (龚晚君, 赵智勇, 刘思敏, 化学进展, 2016, 28, 1732.)
[32] Dong, Y.-H.; Cao, L.-P. Prog. Chem. 2016, 28, 1039(in Chinese). (董运红, 曹利平, 化学进展, 2016, 28, 1039.)
[33] Yang, X.; Liu, F.; Zhao, Z.; Liang, F.; Zhang, H.; Liu, S. Chin. Chem. Lett. 2018, 29, 1560.
[34] Wang, H.; Kan, J.; Bian, B.; Chen, Q.; Tao, Z.; Xiao, X. Chin. J. Org. Chem. 2018, 38, 3094(in Chinese). (王海燕, 阚京兰, 边炳, 陈青, 陶朱, 肖昕, 有机化学, 2018, 38, 3094.)
[35] Yang, M.; Peng, W.; Wang, H.; Zhang, D.; Li, Z. Chin. J. Org. Chem. 2019, 39, 2567(in Chinese). (闫萌, 彭., 王辉, 张丹维, 黎占亭, 有机化学, 2019, 39, 2567.)
[36] Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659(in Chinese). (焦阳, 张希, 化学学报, 2018, 76, 659.)
[37] Wu, Y.-P.; Wang, Z.-K.; Wang, H.; Zhang, D.-W.; Zhao, X.; Li, Z.-T. Acta Chim. Sinica 2019, 77, 735(in Chinese). (吴义鹏, 王泽坤, 王辉, 张丹维, 赵新, 黎占亭, 化学学报, 2019, 77, 735.)
[38] Zhang, B.; Dong, Y.; Li, J.; Yu, Y.; Li, C.; Cao, L. Chin. J. Chem. 2019, 37, 269.
[39] Zhang, T.; Liu, Y.; Hu, B.; Zhang, C.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2019, 30, 949.
[40] Li, X.-F.; Liu, X.-B.; Chao, J.-Y.; Wang, Z.-K.; Rahman, F.-U.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Sci. China, Chem. 2019, 62, 1634.
[41] Deng, Y.; Yin, H.; Zhao, Z.; Wang, R.; Liu, S. Supramol. Chem. 2018, 30, 706.
[42] Kuang, S.; Hu, Z.; Zhang, H.; Zhang, X.; Liang, F.; Zhao, Z.; Liu, S. Chem. Commun. 2018, 54, 2169.
[43] Wan, Q.; To, W. P.; Yang, C.; Che, C. M. Angew. Chem., Int. Ed. 2018, 57, 3089.
[44] Zou, C.; Lin, J.; Suo, S.; Xie, M.; Chang, X.; Lu, W. Chem. Commun. 2018, 54, 5319.
[45] Lu, W.; Chan, M. C. W.; Zhu, N.; Che, C.-M.; Li, C.; Hui, Z. J. Am. Chem. Soc. 2004, 126, 7639.
[46] Horiuchi, S.; Tanaka, H.; Sakuda, E.; Arikawa, Y.; Umakoshi, K. Chem.-Eur. J. 2016, 22, 17533.
[47] Alrawashdeh, L. R.; Day, A. I.; Wallace, L. Dalton Trans. 2013, 42, 16478.
[48] Alrawashdeh, L. R.; Cronin, M. P.; Woodward, C. E.; Day, A. I.; Wallace, L. Inorg. Chem. 2016, 55, 6759.
[49] Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780.
[50] Yang, X.; Liu, S. Dyes Pigm. 2018, 159, 331.
[51] Chan, A. K.; Wu, D.; Wong, K. M.; Yam, V. W.-W. Inorg. Chem. 2016, 55, 3685.
[52] Chan, A. K.; Ng, M.; Low, K. H.; Yam, V. W.-W. J. Am. Chem. Soc. 2018, 140, 8321.
[53] Chen, Y.; Li, K.; Lloyd, H. O.; Lu, W.; Chui, S. S.; Che, C. M. Angew. Chem., Int. Ed. 2010, 49, 9968.
[54] Zvirzdinaite, M.; Garbe, S.; Arefyeva, N.; Krause, M.; von der Stück, R.; Klein, A. Eur. J. Inorg. Chem. 2017, 2017, 2011.
[55] Hung, F. F.; Wu, S. X.; To, W. P.; Kwong, W. L.; Guan, X.; Lu, W.; Low, K. H.; Che, C. M. Chem.-Asian J. 2017, 12, 145.
[56] Swift, C. A.; Gronert, S. Angew. Chem., Int. Ed. 2015, 54, 6475.
文章导航

/