研究论文

铜(I)催化丙炔酸、仲胺、醛和甲醛一锅法交叉偶联构建非对称1,4-二氨基丁炔

  • 刘博瑜 ,
  • 徐仙君 ,
  • 黄立梁 ,
  • 冯煌迪
展开
  • 上海工程技术大学化学化工学院 上海 201620

收稿日期: 2019-11-12

  修回日期: 2020-01-21

  网络出版日期: 2020-03-04

基金资助

上海市自然科学基金(No.15ZR1418800)、中国博士后科学基金(No.2016M601681)、上海工程技术大学(Nos.cs1704006,201810856017).

One-Pot Synthesis of Unsymmetrical 1,4-Diaminobutynes by Cu(I)-Catalyzed Cross-Coupling of Propiolic Acid, Secondary Amine, Aldehydes and Formaldehyde

  • Liu Boyu ,
  • Xu Xianjun ,
  • Huang Liliang ,
  • Feng Huangdi
Expand
  • College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620

Received date: 2019-11-12

  Revised date: 2020-01-21

  Online published: 2020-03-04

Supported by

Project supported by the Natural Science Foundation of Shanghai City (No. 15ZR1418800), the China Postdoctoral Science Foundation (No. 2016M601681), and the Shanghai University of Engineering Science (Nos. cs1704006, 201810856017).

摘要

以丙炔酸、仲胺、烷基醛和甲醛为试剂,在过渡金属铜催化下高效地构建了一系列非对称1,4-二氨基-2-丁炔化合物.该多组分一锅二步方法历经A3-脱羧偶联生成关键中间体炔丙胺,随后该中间体加成到原位形成的亚胺离子上,最终以中等到优异的产率得到交叉偶联产物.该策略成功地将脂肪族仲胺引入到反应体系中,具有底物胺兼容性较好的特点.

本文引用格式

刘博瑜 , 徐仙君 , 黄立梁 , 冯煌迪 . 铜(I)催化丙炔酸、仲胺、醛和甲醛一锅法交叉偶联构建非对称1,4-二氨基丁炔[J]. 有机化学, 2020 , 40(5) : 1290 -1296 . DOI: 10.6023/cjoc201911020

Abstract

A highly selective and efficient copper-catalyzed sequential approach for the one-pot two-step synthesis of unsymmetrical 1,4-diamino-2-butynes from propiolic acid, secondary alkylamine, aldehyde and formaldehyde solution has been developed. The process of this reaction was involved in the generation of key intermediate propargylamines which were obtained via decarboxylative A3-coupling reaction. After that, the intermediate propargylamines would react with in situ formed iminium ions to give the cross-coupling target products in moderate to excellent yields under microwave irradiation.

参考文献

[1] Volla, C. M.; Atodiresei, R. I.; Rueping, M. Chem. Rev. 2014, 114, 2390.
[2] Pellissier, H. Chem. Rev. 2013, 113, 442.
[3] Lu, L. Q.; Chen, J. R.; Xiao, W. J. Acc. Chem. Res. 2012, 45, 1278.
[4] Li, X. M.; Jia, X. S.; Yin, L. Chin. J. Org. Chem. 2017, 37, 2237(in Chinese). (李修明, 贾学顺, 殷亮, 有机化学, 2017, 37, 2237.)
[5] Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
[6] Liu, S. Y.; Yao, W. F.; Liu, Y. Wei, Q. H., Chen, J. H.; Wu, X.; Xia, F.; Hu, W. H. Sci. Adv. 2017, 3, e1602467.
[7]
[7] Xu, J.; Fan, W. G.; Popowycz, F.; Queneau, Y.; Gu, Y. L. Chin. J. Org. Chem. 2019, 39, 2131(in Chinese). (徐静, 范维刚, 波波维奇·弗洛伦斯, 葛诺伊夫, 顾彦龙, 有机化学, 2019, 39, 2131.)
[8] Doemling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168.
[9] He, Y.; Li, Z. H.; Tian, G. L. Song, L. L.; Meervelt, L. V.; Van der Eycken, E. V. Chem. Commun. 2017, 53, 6413.
[10] Xu, R. Q.; Gu, Q.; You, S. L. Angew. Chem., Int. Ed. 2017, 56, 7252.
[11] Irudayanathan, F. M.; Lee, S. Org. Lett. 2017, 19, 2318.
[12] Feng, H. D.; Jia, H. H.; Sun, Z. H. Adv. Synth. Catal. 2015, 357, 2447.
[13] Priebbenow, D. L.; Becker, P.; Bolm, C. Org. Lett. 2013, 15, 6155.
[14]
[14] Zhang, J. Y.; Huang, X.; Shen, Q. Y.; Wang, J. Y.; Song, G. H. Chin. Chem. Lett. 2018, 29, 197.
[15] Feng, H. D.; Jia, H. H.; Sun, Z. H. J. Org. Chem. 2014, 79, 11812.
[16] Zhao, Y. W.; Feng, Q.; Song, Q. L. Chin. Chem. Lett. 2017, 27, 571.
[17] Wang, J. Y.; Shen, Q. Y.; Zhang, J. Y.; Song, G. H. Tetrahedron. Lett. 2015, 56, 903.
[18] Ermolat'ev, D. S.; Feng, H. D.; Song, G. H.; Van der Eycken, E. V. Eur. J. Org. Chem. 2014, 5346.
[19] Jayaraman, A.; Cho, E.; Francis, M. I; Jimin, K.; Lee, S. Adv. Synth. Catal. 2017, 360, 130.
[20] Shi, L. L.; Jia, W.; Li, X.; Jiao, L. Tetrahedron Lett. 2013, 54, 1951.
[21] Raja, G. C. E.; Irudayanathan, F. M.; Kim, H. S.; Lee, S. J. Org. Chem. 2016, 81, 5244.
[22] Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.; Lee, S. J. Org. Chem. 2010, 75, 6244.
[23] Yu, M.; Pan, D. L.; Jia, W.; Chen, W.; Jiao, L. Tetrahedron Lett. 2010, 51, 1287.
[24] Kim, W.; Park, K.; Park, A.; Choe, J.; Lee, S. Org. Lett. 2013, 15, 1654.
[25] Moon, J.; Jeong, M.; Nam, H.; Ju, J. H.; Moon, J. H.; Jung, H. M.; Lee, S. Org. Lett. 2008, 10, 945.
[26] Feng, H. D.; Ermolat'ev, D. S.; Song, G. H.; Van der Eycken, E. V. J. Org. Chem. 2012, 77, 5149.
[27] Feng, H. D.; Zhao, P. F.; Huang, L. L.; Sun, Z. H. Asian J. Org. Chem. 2017, 6, 161.
[28] Feng, H. D.; Zhang, Y. Z.; Zhang, Z. D.; Chen, F. B.; Huang, L. L. Eur. J. Org. Chem. 2019, 1931
[29] Chen, C. L.; Wu, J. J.; Yan, G. B.; Huang, D. Y. Tetrahedron Lett. 2020, 61, 151415.
[30] Lee, Y.; Park, K.; Kim, H. S.; Kim, J. ARKIVOC 2016, V, 1.
[31] Zhao, W. J.; Huang, L.; Guan, Y.; Wulff, W. D. Angew. Chem., Int. Ed. 2014, 53, 3436.
[32] Zhao, P. F.; Feng, H. D.; Pan, H. R.; Sun, Z. H.; Tong, M. C. Org. Chem. Front. 2017, 4, 37.
文章导航

/