研究论文

亚甲基蓝/水溶性磷酸盐柱[5]芳烃对百草枯的竞争性荧光传感

  • 杨云汉 ,
  • 保秋连 ,
  • 罗建萍 ,
  • 杨俊丽 ,
  • 李灿花 ,
  • 魏可可 ,
  • 钏永明 ,
  • 杨丽娟
展开
  • 云南民族大学化学与环境学院 云南省高校智能超分子化学重点实验室 生物基材料绿色制备技术国家地方联合工程中心 昆明 650500

收稿日期: 2019-11-06

  修回日期: 2019-12-18

  网络出版日期: 2020-03-06

基金资助

国家自然科学基金(Nos.21562048,21762051)、云南省高校有机功能分子及材料科技创新团队和云南省教育厅科学研究基金(No.2019Y0193)资助项目.

Competitive Fluorescence Sensing for Paraquat Based on Methylene Blue/Water-Soluble Phosphate Salt Pillar[5]arene

  • Yang Yunhan ,
  • Bao Qiulian ,
  • Luo Jianping ,
  • Yang Junli ,
  • Li Canhua ,
  • Wei Keke ,
  • Chuan Yongming ,
  • Yang Lijuan
Expand
  • Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500

Received date: 2019-11-06

  Revised date: 2019-12-18

  Online published: 2020-03-06

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21562048, 21762051), the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province and the Science Research Fund Project of Yunnan Provincial Department of Education (No. 2019Y0193).

摘要

利用水溶性磷酸盐柱[5]芳烃(PP5A)作为主体,指示染料亚甲基蓝(MB)作为客体,构筑了MB/PP5A主-客体包合物,研究了PP5A与MB包合时的荧光性质、络合常数、络合比以及包合模式,并将包合物运用于百草枯(PQ)的竞争性荧光传感.MB与PP5A受体络合后,MB的荧光发生淬灭,将PQ加入到MB/PP5A传感系统中,PQ竞争进入PP5A的空腔中,而MB从PP5A的空腔中脱离导致荧光恢复,以此来实现对PQ的竞争性荧光传感.因此,MB/PP5A荧光传感系统可以灵敏地检测PQ,最低检测限为3.6×10-7 mol·L-1.该探针具有选择性强、制备简便快捷、较宽pH范围下响应和良好的抗干扰性能等优点,为生物体及环境中PQ的传感检测提供基础.

本文引用格式

杨云汉 , 保秋连 , 罗建萍 , 杨俊丽 , 李灿花 , 魏可可 , 钏永明 , 杨丽娟 . 亚甲基蓝/水溶性磷酸盐柱[5]芳烃对百草枯的竞争性荧光传感[J]. 有机化学, 2020 , 40(6) : 1680 -1688 . DOI: 10.6023/cjoc201911008

Abstract

Using water-soluble phosphate salt pillar[5]arene (PP5A) as the host and indicate dye methylene blue (MB) as the guest, the MB/PP5A host-guest inclusion complex was constructed. The fluorescence properties, complexation constants, complexation ratios and binding modes of PP5A and MB were studied. The inclusion complex was applied to competitive fluorescent sensing of paraquat (PQ). When MB is complexed with PP5A receptor, its fluorescence is quenched. When PQ is added to the MB/PP5A sensing system, PQ competes into the cavity of PP5A and MB is detached from the cavity of PP5A, which led to fluorescence recovery. This enables competitive fluorescence sensing of PQ. Therefore, the MB/PP5A fluorescence sensing system can detect PQ sensitively with a minimum detection limit of 3.6×10-7mol·L-1. The probe has the advantages of strong selectivity, simple and fast preparation, response in a wide pH range and good anti-interference performance, and can provide the basis for the sensing detection of PQ in organisms and environments.

参考文献

[1] Desipio, M. M.; Thorpe, R.; Saha, D. Optik 2018, 172, 1047.
[2] Siangproh, W.; Somboonsuk, T.; Chailapakul, O.; Songsrirote, K. Talanta 2017, 174, 448.
[3] Hu, X.; Liang, Y.-Y.; Zhao, H.-Y.; Zhao, M. Int. Immunopharmacol. 2019, 67, 231.
[4] Gao, C.; Huang, Q.-X.; Lan, Q.-P.; Feng, Y.; Tang, F.; Hoi, M. P. M.; Zhang;, J.-X.; Lee S. M. Y.; Wang, R.-B. Nat. Commun. 2018, 9, 2967.
[5] Yu, G.-C.; Zhou, X.-Y.; Zhang, Z.-B.; Han, C.-Y.; Mao, Z.-W.; Gao, C.-Y.; Huang, F.-H. J. Am. Chem. Soc. 2012, 134, 19489.
[6] Wang, K.; Guo, D.-S.; Zhang, H.-Q.; Li, D.; Zheng, X-L.; Liu, Y. J. Med. Chem. 2009, 52, 6402.
[7] Zhao, Z.-Z.; Zhang, F.-W.; Zhang, Z.-P. Spectrochim. Acta A 2018, 199, 96.
[8] Tcheumi, H. L.; Tassontio, V. N.; Tonle, I. K.; Ngameni, E. Appl. Clay Sci. 2019, 173, 97.
[9] Rai, M. K.; Das, J. V.; Gupta, V. K. Talanta 1997, 45, 343.
[10] Lu, T.; Birke, R. L.; Lombardi, J. R. Langmuir 1986, 2, 305.
[11] Kambhampati, I.; Roinestad, K. S.; Hartman, T. G.; Rosen, J. D.; Fukuda, E. K.; Lippincott, R. L.; Rosen, R. T. J. Chromatogr. A 1994, 688, 67.
[12] Gao, L.; Liu, J.-T.; Wang, C.-Y.; Liu, G.-J.; Niu, X.-D.; Shu, C.-X.; Zhu, J. J. Chromatogr. B 2014, 944, 136.
[13] Tomková, H.; Sokolová, R.; Opletal, T.; Kučerová, P.; Kučera, L.; Součková, J.; Skopalová, J.; Barták, P. J. Electroanal. Chem. 2018, 821, 33.
[14] Vinner, E.; Stievenart, M.; Humbert, L.; Mathieu, D. Biomed. Chromatogr. 2001, 15, 342.
[15] Usui, K.; Minami, E.; Fujita, Y.; Kobayashi, H.; Hanazaw, T.; Kamijo, Y.; Funayama, M. J. Pharmacol. Toxicol. Methods 2019, 100, 106610.
[16] Yang, Y.-H.; Yang, J.-L.; Du, Y.; Li C.-H.; Wei K.-K.; Lu, J.-J.; Chen, W.; Yang, L.-J. ACS Omega 2019, 4, 17741.
[17] Du, T.; Yuan, W.; Zhao, Z. Y.; Liu, S. M. Chem. Commun. 2019, 55, 3658.
[18] Xie, Z.-P.; Lei, J.-L.; Yang, M.-F.; Li, Y.-J.; Geng, X.-H.; Liu, S.-M.; Wang, J.-H. Biosens. Bioelectron. 2019, 127, 200.
[19] Chen, Y.; Huang, F.-H.; Li, Z.-T.; Liu, Y. Sci. China Chem. 2018, 61, 979.
[20] Huo, B.-C.; Li, B.; Su, H.; Zeng, X. Q.; Xu, K.-D.; Cui, L. Chin. J. Org. Chem. 2019, 39, 1990(in Chinese). (霍博超, 李斌, 苏杭, 曾宪强, 徐凯迪, 崔雷, 有机化学, 2019, 39, 1990.)
[21] Sun, C.-L.; Teng, K.-X.; Niu, L.-Y.; Chen, Y.-Z.; Yang, Q.-Z. Acta Chim. Sinica 2018, 76, 779.
[22] Li, P.-Y.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2019, 30, 1190.
[23] Wang, M.-J.; Du, X.-S.; Tian, H.-S.; Jia, Q.; Deng, R.; Cui, Y.-H.; Wang, C. Y; Kamel, M. Chin. Chem. Lett. 2019, 30, 345.
[24] Li, Z.-T.; Yang, J.; Huang, F.-H. Chin. J. Chem. 2018, 36, 59.
[25] Jie, K.-C.; Zhou, Y.-J.; Li, E.-R.; Huang, F.-H. Acc. Chem. Res. 2018, 51, 2064.
[26] Shao, W.; Liu, X.; Wang, T.-T.; Hu, X.-Y. Chin. J. Org. Chem. 2018, 38, 1107(in Chinese). (绍为, 刘昕, 王婷婷, 胡晓玉, 有机化学, 2018, 38, 1107.)
[27] Pian, M. D.; Schalley, C. A.; Fabris, F.; Scarso, A. Org. Chem. Front. 2019, 6, 1044.
[28] Cao, D.-R.; Herbert, M. Chin. Chem. Lett. 2019, 30, 1758.
[29] Zhang, Z.-B.; Sun, K.-C.; Li, S.-J.; Yu, G.-C. Chin. Chem. Lett. 2019, 30, 957.
[30] Tan, X.-P.; Wu, Y.; Yu, S.; Zhang, T.-Y.; Tian, H.-X.; He, S.-H.; Zhao, A.-N.; Chen, Y.-W.; Gou, Q. Talanta 2019, 195, 472.
[31] Qian, X. C.; Zhou, X. J.; Gao, W.; Li, J.; Ran, X.; Du, G. B.; Yang, L. Microchem. J. 2019, 150, 104203.
[32] Li, H. Chen, D.-X.; Sun, Y.-L.; Zheng, Y.-B.; Tan, L.-L.; Weiss, P.-S.; Yang, Y.-W. J. Am. Chem. Soc. 2013, 135, 1570.
[33] Wang, X.; Liu, Z. J.; Hill, E. H.; Zheng, Y. B.; Guo, G. Q.; Wang, Y.; Weiss, P. S.; Yu, J. H.; Yang, Y. W. Matter 2019, 1, 848.
[34] Sun, S.-G.; Li, F.-S.; Liu, F.-Y.; Wang, J.-T.; Peng, X.-J. Sci. Rep. 2014, 4, 3570.
[35] Mao, X.-W.; Liu, T.; Bi, J.-H.; Luo, L.; Tian, D.-M.; Li, H.-B. Chem. Commun. 2016, 52, 4385.
[36] Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.
[37] Shi, H.-X.; Cheng, X.-B.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Chin. J. Org. Chem. 2018, 38, 1718(in Chinese). (师海雄, 程晓斌, 林奇, 姚虹, 张有明, 魏太保, 有机化学, 2018, 38, 1718.)
[38] Li, Z.-Y.; Hou, N.-N.; Shao, W.; Xiao, S.-J.; Lin, C.; Wang, L.-Y. Chin. J. Org. Chem. 2018, 38, 2002(in Chinese). (李臻益, 候娜娜, 邵为, 肖守军, 林晨, 王乐勇, 有机化学, 2018, 38, 2002.)
[39] Wang, X.; Wu, J.-R.; Liang, F.; Yang, Y.-W. Org. Lett. 2019, 21, 5215.
[40] Ma, X.-Q.; Wang, Y.; Wei, T.-B.; Qi, L.-H.; Jiang, X.-M.; Ding, J.-D.; Zhu, W.-B.; Yao, H.; Zhang, Y.-M.; Lin, Q. Dyes Pigm. 2019, 164, 279.
[41] Chen, J.-F.; Liu, X.; Han, B.-B.; Ding, J.-D.; Zhang, Y.-M.; Lin, Q.; Yao, H.; Wei, T.-B. Chin. J. Org. Chem. 2018, 38, 2741(in Chinese). (陈进发, 刘茜, 韩冰冰, 丁金东, 张有明, 林奇, 姚虹, 魏太保, 有机化学, 2018, 38, 2741.)
[42] Venkatesan, M.; Sathiyanarayanan, K. I. Sens. Actuators B 2018, 267, 373.
[43] Huang, X.; Wu, S.-S.; Ke, X.-K.; Li, X.-Y.; Du, X.-Z. ACS Appl. Mater. Interfaces 2017, 9, 19638.
[44] Cui, S.-Y.; Du, J.-L.; Wang, T.; Hu, X.-L. Spectrochim. Acta A 2012, 96, 188.
[45] Zhou, Y.-Y.; Yu, H.-P.; Zhang, L.; Xu, H.-W.; Wu, L.; Sun, J.-Y.; Wang, L. Microchim. Acta 2009, 164, 63.
[46] Montes-Navajas P., Corma, A.; Garcia, H. Chem. Phys. Chem. 2008, 9, 713.
[47] Lu, Q.; Gu, J.-H.; Yu, H.-P.; Liu, C.; Wang, L.; Zhou, Y.-Y. Spectrochim. Acta A 2007, 68, 15.
[48] Zhao, G.-C.; Zhu, J.-J.; Chen, H.-Y. Spectrochim. Acta A 1999, 55, 1109.
[49] Yang, K.; Wen, J.; Chao, S.; Liu, J.; Yang, K.; Pei, Y.-X.; Pei, Z.-C. Chem. Commun. 2018, 54, 5911.
[50] Wang, L.; Fan, Y.-Q.; Guan, X.-W.; Qu, W.-J.; Lin, Q.; Yao, H.; Wei, T.-B.; Zhang, Y.-M. Tetrahedron 2018, 74, 4005.
[51] Siangproh, W.; Somboonsuk, T.; Chailapakul, O.; Songsrirote, K. Talanta 2017, 174, 448.
[52] Chuntib, P.; Themsirimongkon, S.; Saipanya, S.; Jakmunee, J. Talanta 2017, 170, 1.
[53] Zhao, Z.-Z.; Zhang, F.-W.; Zhang, Z.-P. Spectrochim. Acta A 2018, 199, 96.
[54] Chuntib, P.; Jakmunee, J. Talanta 2015, 144, 432.
[55] Tu, J.; Xiao, L.-L.; Jiang, Y.-F.; He, Q.-Y.; Sun, S.-G.; Xu, Y.-Q. Sens. Actuators B 2015, 215, 382.
[56] Chen, C.-R.; Men, G.-G.; Bu, W.-H.; Liang, C.-S.; Sun, H.-C.; Jiang, S.-M. Sens. Actuators B 2015, 220, 463.
[57] Hu, S. M.S. Thesis, Hebei University of Science and Technology, Shijiazhuang, 2011 (in Chinese). (胡硕, 硕士论文, 河北科技大学, 石家庄, 2011.)
[58] Grandis, V. D.; Bizzarri, A. R.; Cannistraro, S. J. Mol. Recognit. 2007, 20, 215.
[59] Hu, X.-Y.; Liu, X.; Zhang, W.-Y.; Qin, S.-Yao, C. H.; Li, Y.; Cao, D.-R.; Peng, L.-M.; Wang, L.-Y. Chem. Mater. 2016, 28, 3778.
[60] Yao, Y. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2015 (in Chinese). (姚勇, 博士论文, 浙江大学, 杭州, 2015.)
[61] Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785.
文章导航

/