综述与进展

可见光直接促进的过渡金属催化交叉偶联反应研究进展

  • 李祯龙 ,
  • 金健 ,
  • 黄莎华
展开
  • a 上海应用技术大学化学与环境工程学院 上海 201418;
    b 中国科学院上海有机化学研究所 中国科学院天然产物有机合成化学重点实验室 分子合成卓越创新中心 上海 200032

收稿日期: 2019-10-23

  修回日期: 2019-11-21

  网络出版日期: 2020-04-02

基金资助

国家自然科学基金(No.21402121)和上海应用技术大学协同创新计划(No.XTCX2015-16)资助项目.

Recent Advances in Transition Metal-Catalyzed Cross-Coupling Reactions Directly Promoted by Visible Light

  • Li Zhenlong ,
  • Jin Jian ,
  • Huang Shahua
Expand
  • a School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418;
    b CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2019-10-23

  Revised date: 2019-11-21

  Online published: 2020-04-02

Supported by

Project supported by the National Natural Science Foundation of China (No. 21402121) and the Collaborative Innovation Program of Shanghai Institute of Technology (No. XTCX2015-16).

摘要

经过几十年的发展,过渡金属催化的交叉偶联反应已经成为一类功能强大的有机合成方法,广泛应用于各种碳碳键和碳杂原子键的高效构建.最近几年化学家们发现在越来越多的情况下,不用外加光敏剂,可见光能直接促进过渡金属催化的交叉偶联反应,使原来无法发生或缓慢进行的偶联反应得以顺利实现.该类反应因条件简单、反应温和以及无需外加光敏剂等优点受到了广泛的关注.根据过渡金属的分类,综述了近些年来该类反应的研究进展.

本文引用格式

李祯龙 , 金健 , 黄莎华 . 可见光直接促进的过渡金属催化交叉偶联反应研究进展[J]. 有机化学, 2020 , 40(3) : 563 -574 . DOI: 10.6023/cjoc201910031

Abstract

Over the last decades, the transition metal-catalyzed cross-coupling reactions have become powerful organic synthetic methods for forming carbon-carbon and carbon-heteroatom bonds. Very recently, the introduction of visible light into transition metal catalysis opened a new avenue for achieving novel, highly enabling cross-coupling reactions that otherwise were elusive. This type of reaction has received extensive attention due to its simple, mild conditions and no need of photocatalyst. Based on the classification of transition metals, the research progress of transition metal-catalyzed cross-coupling reactions directly promoted by visible light is reviewed.

参考文献

[1] (a) Yi, H.; Zhang, G.; Wang, H. M.; Huang, Z. Y.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016.
(b) Campeau, L.-C.; Hazari, N. Organometallics 2019, 38, 3.
(c) Korch, K. M.; Watson, D. A. Chem. Rev. 2019, 119, 8192.
[2] (a) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6723.
(b) Negishi, E.-I. Angew. Chem., Int. Ed. 2011, 50, 6738.
(c) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
[3] (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(b) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(c) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(d) Wei, Y.; Zhou, Q.-Q.; Tan, F.; Lu, L.-Q.; Xiao, W.-J. Synthesis 2019, 51, 3021.
(e) Ye, H.; Xiao, C.; Lu, L. Q. Chin. J. Org. Chem. 2018, 38, 1897(in Chinese). (叶辉, 肖聪, 陆良秋, 有机化学, 2018, 38, 1897.)
(f) Ruan, L. H.; Chen, C. X.; Zhang, X. X.; Sun, J. Chin. J. Org. Chem. 2018, 38, 3155(in Chinese). (阮利衡, 陈春欣, 张晓欣, 孙京, 有机化学, 2018, 38, 3155.)
(g) Zhang, H.; Yu. S. Y. Chin. J. Org. Chem. 2019, 39, 95(in Chinese). (张昊, 俞寿云, 有机化学, 2019, 39, 95.)
(h)Xu, W. X.; Dai, X. Q.; Xu, H. J.; Weng, J. Q. Chin. J. Org. Chem. 2018, 38, 2807(in Chinese). (徐雯秀, 戴小强, 徐涵靖, 翁建全, 有机化学, 2018, 38, 2807.)
[4] (a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(b) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.
[5] Sagadevan, A.; Hwang, K. C. Adv. Synth. Catal. 2012, 354, 3421.
[6] Sagadevan, A.; Lyu, P.-C.; Hwang, K. C. Green Chem. 2016, 18, 4526.
[7] Charpe, V. P.; Hande, A. A.; Sagadevan, A.; Hwang, K. C. Green Chem. 2018, 20, 4859.
[8] Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647.
[9] Hossain, A.; Bhattacharyya, A.; Reiser, O. Science 2019, 364, 450.
[10] Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.
[11] Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 12153.
[12] Matier, C. D.; Schwaben, J.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 17707.
[13] Ahn, J. M.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 18101.
[14] He, J.; Chen, C.; Fu, G. C.; Peters, J. C. ACS Catal. 2018, 8, 11741.
[15] Hazra, A.; Lee, M. T.; Chiu, J. F.; Lalic, G. Angew. Chem., Int. Ed. 2018, 57, 5492.
[16] Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 15505.
[17] Yang, L.; Zhang, J.-Y.; Duan, X.-H.; Gao, P.; Jiao, J.; Guo, L.-N. J. Org. Chem. 2019, 84, 8615.
[18] Xiong, Y.; Ma, X. D.; Zhang, G. Z. Org. Lett. 2019, 21, 1699.
[19] Toth, B. L.; Tischler, O.; Novak, Z. Tetrahedron Lett. 2016, 57, 4505.
[20] Abdiaj, I.; Fontana, A.; Gomez, M. V.; de la Hoz, A.; Alcázar, J. Angew. Chem., Int. Ed. 2018, 57, 8473.
[21] Abdiaj, I.; Horn, C. R.; Alcázar, J. J. Org. Chem. 2019, 84, 4748.
[22] Gandolfo, E.; Tang, X. J.; Raha Roy, S.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 16854.
[23] Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.
[24] Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 11125.
[25] Kreis, L. M.; Krautwald, S.; Pfeiffer, N.; Martin, R. E.; Carreira, E. M. Org. Lett. 2013, 15, 1634.
[26] Song, J.-Y.; Zhou, X.; Song, H.; Liu, Y.; Zhao, H.-Y.; Sun, Z.-Z.; Chu, W.-Y. ChemCatChem 2018, 10, 758.
[27] Ravetz, B. D.; Wang, J. Y.; Ruhl, K. E.; Rovis, T. ACS Catal. 2019, 9, 200.
[28] Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.
[29] Wei, X.-J.; Abdiaj, I.; Sambiagio, C.; Li, C. F.; Zysman-Colman, E.; Alcázar, J.; Noël, T. Angew. Chem., Int. Ed. 2019, 58, 13030.
[30] Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Chem. Rev. 2018, 118, 2249.
[31] Roslin, S.; Odell, L. R. Chem. Commun. 2017, 53, 6895.
[32] Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed. 2017, 56, 14212.
[33] Wang, G. Z.; Shang, R.; Cheng, W. M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307.
[34] Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.
[35] Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V. Org. Lett. 2018, 20, 357.
[36] Wang, G.-Z.; Shang, R.; Fu, Y. Org. Lett. 2018, 20, 888.
[37] Wang, G.-Z.; Shang, R.; Fu, Y. Synthesis 2018, 50, 2908.
[38] Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.; Daniliuc, C. G.; Glorius, F. Chem.-Eur. J. 2018, 24, 4552.
[39] Jiao, Z. W.; Lim, L. H.; Hirao, H.; Zhou, J. S. Angew. Chem., Int. Ed. 2018, 57, 6294.
[40] Abdiaj, I.; Huck, L.; Mateo, J. M.; de la Hoz, A.; Gomez, M. V.; Díaz-Ortiz, A.; Alcázar, J. Angew. Chem., Int. Ed. 2018, 57, 13231.
[41] Kancherla, R.; Muralirajan, K.; Maity, B.; Zhu, C.; Krach, P. E.; Cavallo, L.; Rueping, M. Angew. Chem., Int. Ed. 2019, 58, 3412.
[42] Thongpaen, J.; Manguin, R.; Dorcet, V.; Vives, T.; Duhayon, C.; Mauduit, M.; Basle, O. Angew. Chem., Int. Ed. 2019, 58, 15244.
[43] Sagadevan, A.; Greaney, M. F. Angew. Chem., Int. Ed. 2019, 58, 9826.
[44] (a) Pflaesterer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331.
(b) Xie, J.; Li, J.; Weingand, V.; Rudolph, M.; Hashmi, A. S. K. Chem.-Eur. J. 2016, 22, 12646.
(c) Xie, J.; Jin, H. M.; Hashmi, A. S. K. Chem. Soc. Rev. 2017, 46, 5193.
(d) Harper, M. J.; Arthur, C. J.; Crosby, J.; Emmett, E. J.; Falconer, R. L.; Fensham-Smith, A. J.; Gates, P. J.; Leman, T.; McGrady, J. E.; Bower, J. F.; Russell. C. A. J. Am. Chem. Soc. 2018, 140, 4440.
[45] (a) Huang, L.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2016, 52, 6435.
(b) Zhang, G. Z.; Peng, Y.; Cui, L.; Zhang, L. M. Angew. Chem., Int. Ed. 2009, 48, 3112.
[46] (a) Kim, S.; Rojas-Martin, J.; Toste, F. D. Chem. Sci. 2016, 7, 85.
(b) Tlahuext-Aca, A.; Hopkinson, M. N.; Sahoo, B.; Glorius, F. Chem. Sci. 2016, 7, 89.
[47] Witzel, S.; Xie, J.; Rudolph, M.; Hashmi, A. S. K. Adv. Synth. Catal. 2017, 359, 1522.
[48] Witzel, S.; Sekine, K.; Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2018, 54, 13802.
[49] Gu, Q.; Jia, Q. H.; Long, J. L.; Gao, Z. W. ChemCatChem 2019, 11, 669.
[50] Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J. F.; Arnold, D. P.; Liu, H. W; Zhu, H. Y. Green Chem. 2014, 16, 4272.
[51] Xiao, Q.; Sarina, S.; Bo, A.; Jia, J. F.; Arnold, D. P.; Huang, Y. M.; Wu, H. H.; Zhu, H. Y. ACS Catal. 2014, 4, 1725.
[52] Sharma, K.; Kumar, M.; Bhalla, V. Chem. Commun. 2015, 51, 12529.
[53] Zhang, W.-Q.; Li, Q.-Y.; Zhang, Q.; Lu, Y.-.; Lu, H.; Wang, W.-G.; Zhao, X.-S.; Wang, X.-J. Inorg. Chem. 2016, 55, 1005.
[54] Sun, D. R.; Li, Z. H. J. Phys. Chem. C 2016, 120, 19744.
[55] Raza, F.; Yim, D. B.; Park, J. H.; Kim, H. I.; Jeon, S. J.; Kim, J. H. J. Am. Chem. Soc. 2017, 139, 14767.
[56] Shin, H. H.; Kang, E.; Park, H.; Han, T.; Lee, C. H.; Lim, D. K. J. Mater. Chem. A 2017, 5, 24965.
[57] Kang, E.; Shin, H. H; Lim, D.-K. Catalysts 2018, 8, 463.
[58] Feizpour, F.; Jafarpour, M.; Rezaeifard, A. New J. Chem. 2018, 42, 807.
[59] Ge, Y. Q.; Diao, P. H.; Xu, C.; Zhang, N. N.; Guo, C. Chin. Chem. Lett. 2018, 29, 903.
[60] Masing, F.; Nusse, H.; Klingauf, J.; Studer, A. Org. Lett. 2018, 20, 752.
[61] Yamamoto, A.; Ohara, T.; Yoshida, H. Catal. Sci. Technol. 2018, 8, 2046.
[62] Guo, B.; Li, H.-X.; Zha, C.-H.; Young, D. J.; Li, H.-Y.; Lang, J.-P. ChemSusChem 2019, 12, 1421.
文章导航

/