综述与进展

无过渡金属体系下C (sp2)—H键的自由基反应构建C—N键研究进展

  • 吴燕 ,
  • 陈锦杨 ,
  • 李强 ,
  • 魏文廷
展开
  • a 长江师范学院化学化工学院 重庆 408000;
    b 聊城大学化学化工学院 山东聊城 252059;
    c 宁波大学材料科学与化学工程学院 浙江宁波 315211

收稿日期: 2019-09-22

  修回日期: 2019-10-26

  网络出版日期: 2020-04-02

基金资助

重庆市基础前沿研究(Nos.Cstc2018jcyjAX0721,Cstc2018jcyjAX0051)、长江师范学院青年人才成长计划(No.2018QNRC11)、重庆市教育委员会(No.KJQN201801404)资助项目.

Progress in C—N Bond Formation Involving C(sp2)—H Bond through Transition-Metal-Free Radical Reactions

  • Wu Yan ,
  • Chen Jinyang ,
  • Li Qiang ,
  • Wei Wenting
Expand
  • a College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000;
    b School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059;
    c School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211

Received date: 2019-09-22

  Revised date: 2019-10-26

  Online published: 2020-04-02

Supported by

Project supported by the Basic and Frontier Research Project of Chongqing (Nos. Cstc2018jcyjAX0721, Cstc2018jcyjAX0051), the Youth Talent Growth Plan Project of Yangtze Normal University (No. 2018QNRC11) and the Education Commission of Chongqing City (No. KJQN201801404).

摘要

C—N键广泛存在于药物分子、天然产物及功能材料中,开发简洁高效的C—N键构建方法具有重要意义.近年来,无过渡金属体系下C(sp2)—H键的自由基反应构建C—N键取得了诸多进展.该方法反应条件相对温和,反应活性较高,为C—N键构建提供了一条新途径.根据氮源类型的不同,对近年来C(sp2)—H键的自由基反应构建C—N键的研究进展进行简要论述.

本文引用格式

吴燕 , 陈锦杨 , 李强 , 魏文廷 . 无过渡金属体系下C (sp2)—H键的自由基反应构建C—N键研究进展[J]. 有机化学, 2020 , 40(3) : 589 -597 . DOI: 10.6023/cjoc201909032

Abstract

The C-N bond is widely found in medicinal molecules, natural products and functional materials. Therefore, it has great significance to develop simple and efficient methods for the construction of C-N bond. Recently, remarkable progress has been made in construction of C-N bond involving C(sp2)-H bond through transition-metal-free radical reactions. Due to the relatively mild reaction condition and high reactivity, it provides a novel approach to construct C-N bond. In this review, the recent developments in this area are summarized on the basis of different nitrogen sources.

参考文献

[1] Humphrey, J.-M.; Chamberlin, A.-R. Chem. Rev. 1997, 97, 2243.
[2] Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 1926.
[3] Cho, H. S.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
[4] Liu, W.; Zheng, X. Y.; Zeng, J. G.; Chen, P. Chin. J. Org. Chem. 2017, 37, 1(in Chinese). (刘薇, 郑昕宇, 曾建国, 程辟, 有机化学, 2017, 37, 1.)
[5] Yuan, S.; Wang, Y.; Qiu, G.; Liu, J. Chin. J. Org. Chem. 2017, 37, 566(in Chinese). (袁斯甜, 王艳华, 邱观音生, 刘晋彪, 有机化学, 2017, 37, 566.)
[6] Wei, W.; Zhu, W.; Wu, Y.; Huang, Y.; Liang, H. Chin. J. Org. Chem. 2017, 37, 1916(in Chinese). (魏文廷, 朱文明, 吴益, 黄依铃, 梁洪泽, 有机化学, 2017, 37, 1916.)
[7] Davies, H. M. L.; Long, M.-S. Angew. Chem., Int. Ed. 2005, 44, 3518.
[8] Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382.
[9] Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
[10] Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
[11] Liu, X.; Chen, W.; Ni, B.; Chen. X.; Qian, C.; Ge, X. Chin. J. Org. Chem. 2018, 38, 1703(in Chinese). (刘学民, 陈雯, 倪邦庆, 陈新志, 钱超, 葛新, 有机化学, 2018, 38, 1703.)
[12] Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790.
[13] Muthaiah, S.; Ghosh, S.-C.; Jee, J.-E.; Chen, C.; Zhang, J.; Hong, S.-H. J. Org. Chem. 2010, 75, 3002.
[14] Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
[15] Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341.
[16] Zhang, W.-M.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2015, 35, 1820(in Chinese). (张文曼, 戴建军, 许华建, 有机化学, 2015, 35, 1820.)
[17] Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Science 2015, 348, 886.
[18] Liu, D.; Lei, A. Chem. Asian J. 2015, 10, 806.
[19] Luo, J.; Wei, W.-T. Adv. Synth. Catal. 2018, 360, 2076.
[20] Senger, J.; Melesina, J.; Marek, M.; Romier, C.; Oehme, I.; Witt, O.; Sippl, W.; Jung, M. J. Med. Chem. 2016, 59, 1545.
[21] Xue, Q.; Xie, J.; Xu, P.; Hu, K.; Cheng, Y.; Zhu, C. ACS Catal. 2013, 3, 1365.
[22] Xin, J.-R.; He, Y.-L.; Guan, Z. Org. Chem. Front. 2018, 5, 1684.
[23] Huryn, D. M.; Okabe, M. Chem. Rev. 1992, 92, 1745.
[24] Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
[25] Megiatto, J. D.; Schuster, D. I. J. Am. Chem. Soc. 2008, 130, 12872.
[26] Park, C.; Kim, H.; Kim, S.; Kim, C. J. Am. Chem. Soc. 2009, 131, 16614.
[27] Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985.
[28] Qiu, J.; Zhang. R. Org. Biomol. Chem. 2014, 12, 4329.
[29] Kong, W.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078.
[30] Sun, Y.-M.; Yu, L.-Z.; Zhu, Z.-Z.; Hu, X.-B.; Gao, Y.-N.; Shi, M. Org. Biomol. Chem. 2017, 15, 634.
[31] Liu, Z.; Liu, Z.-Q. Org. Lett. 2017, 19, 5649.
[32] Xia, X.-F.; Gu, Z.; Liu, W.; Wang, H.; Xia, Y.; Gao, H.; Liu, X.; Liang, Y.-M. J. Org. Chem. 2015, 80, 290.
[33] Yang, B.; Lu, Z. ACS Catal. 2017, 7, 8362.
[34] Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197.
[35] Wang, M.; Wu, Z.; Zhang, B.; Zhu, C. Org. Chem. Front. 2018, 5, 1896.
[36] Ying, W.-W.; Chen, W.-T.; Bao, W.-H.; Gao, L.-H.; Wang, X.-Y.; Chen, G.-P.; Ge, G.-P.; Wei, W.-T. Synlett 2018, 29, 1664.
[37] Wang, Y.-N.; Li, Q.; Fang, Y.-L.; Gao, L.-H.; Song, S.-Z.; Dong, Y.; Wei, W.-T. Asian J. Org. Chem. 2019, 8, 832.
[38] Song, L. R.; Fan, Z.; Zhang, A. Org. Biomol. Chem. 2019, 17, 1351.
[39] Ballini, R.; Araújo, N.; Gil, M. V.; Román, E.; Serrano, J. A. Chem. Rev. 2013, 113, 3493.
[40] Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Org. Lett. 2013, 15, 3384.
[41] Manna, S.; Jana, S.; Saboo, T.; Maji, A.; Maiti, D. Chem. Commun. 2013, 49, 5286.
[42] Jiao, N.; Shen, T.; Yuan, Y. Chem. Commun. 2014, 50, 554.
[43] Gao, L.-H.; Meng, X.-X.; Wang, Y.-N.; Song, S.-Z.; Ge, G.-P.; Dong, Y.; Wei, W.-T.; Liu, Y.-Y.; Li, Q. Asian J. Org. Chem. 2019, 8, 348.
[44] Liu, Y.; Zhang, J.-L.; Song, R.-J.; Qian, P.-C.; Li, J.-H. Angew. Chem., Int. Ed. 2014, 53, 9017.
[45] Wei, W.-T.; Ying, W.-W.; Bao, W.-H.; Gao, L.-H.; Xu, X.-D.; Wang, Y.-N.; Meng, X.-X.; Chen, G.-P.; Li, Q. ACS Sustainable Chem. Eng. 2018, 6, 15301.
[46] Li, Z.; Zhang, C.; Zhu, L.; Liu, C.; Li, C. Org. Chem. Front. 2014, 1, 10.
[47] Harej, M.; Dolenc, D. J. Org. Chem. 2007, 72, 7214.
[48] Duan, X.-Y.; Yang, X.-L.; Fang, R.; Peng, X.-X.; Yu, W.; Han, B. J. Org. Chem. 2013, 78, 10692.
[49] Yu, J.; Cai, C. Org. Biomol. Chem. 2018, 16, 490.
[50] Duan, X.-Y.; Yang, X.-L.; Jia, P.-P.; Zhang, M.; Han, B. Org. Lett. 2015, 17, 6022.
[51] Guo, J.; Li, W. M.; Xue, W. W.; Ye, X.-S. J. Med. Chem. 2017, 60, 2135.
[52] Yuan, Y.; Hou, W.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. Org. Lett. 2014, 16, 5410.
[53] Zhao, F.; Sun, T.; Sun, H.; Xi, G.; Sun, K. Tetrahedron Lett. 2017, 58, 3132.
[54] Kiyokawa, K.; Kosaka, T.; Minakata, S. Org. Lett. 2013, 15, 4858.
[55] Liu, X.; Qian, P.; Wang, Y.; Pan, Y. Org. Chem. Front. 2017, 4, 2370.
[56] Zhang, L.; Kong, X.; Liu, S.; Zhao, Z.; Yu, Q.; Wang, W.; Wang, Y. Org. Lett. 2019, 21, 2923.
[57] Qiu, J.; Tu, S.; Hao, W.; Wang, D.; Wei, P.; Sun, J.; Jiang, B. Chem. Commun. 2014, 50, 14782.
文章导航

/