综述与进展

可见光诱导烷基羧酸及其衍生物的脱羧偶联反应研究进展

  • 周明东 ,
  • 覃丕涛 ,
  • 经理珂 ,
  • 孙京 ,
  • 杜海武
展开
  • 辽宁石油化工大学化学化工与环境学部 辽宁抚顺 113001

收稿日期: 2019-09-18

  修回日期: 2019-11-01

  网络出版日期: 2020-04-02

基金资助

辽宁省自然科学基金博士启动(No.20180540085)资项目.

Progress in Photoinduced Decarboxylative Radical Cross-Coupling of Alkyl Carboxylic Acids and Their Derivatives

  • Zhou Mingdong ,
  • Qin Pitao ,
  • Jing Like ,
  • Sun Jing ,
  • Du Haiwu
Expand
  • College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001

Received date: 2019-09-18

  Revised date: 2019-11-01

  Online published: 2020-04-02

Supported by

Project supported by the Doctoral Start-up Foundation of Liaoning Province (No. 20180540085).

摘要

烷基羧酸广泛存在于自然界之中,科研工作者一直致力于开发以来源丰富的烷基羧酸及其衍生物作为起始原料的反应.烷基羧酸及其衍生物在可见光氧化还原作用下可以高效地生成烷基自由基,从而在温和条件下用于构筑各类化学键.以可见光催化烷基羧酸及其衍生物的脱羧自由基反应类型为线索,系统地综述了近年来在可见光条件下烷基羧酸及其衍生物的脱羧官能团化反应研究进展.

本文引用格式

周明东 , 覃丕涛 , 经理珂 , 孙京 , 杜海武 . 可见光诱导烷基羧酸及其衍生物的脱羧偶联反应研究进展[J]. 有机化学, 2020 , 40(3) : 598 -613 . DOI: 10.6023/cjoc201909030

Abstract

Alkyl carboxylic acids are among the most ubiquitous organic molecules found in nature. The reactions using abundant carboxylic acid and its derivatives as starting materials deserve widespread attention over the world. They are often easy to generate alkyl radical by photoredox catalysis under mild conditions for building various chemical bonds in organic chemistry. Based on the reaction modes, decarboxylation of alkylcarboxylic acids and their derivatives, the recent progress in decarboxylation of alkylcarboxylic acids and their derivatives under visible light is reviewed.

参考文献

[1] Lunbderg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev. 2014, 43, 2714.
[2] Morrill, L. C.; Smith, A. D. Chem. Soc. Rev. 2014, 43, 6214.
[3] Straathof, A. J. J. Chem. Rev. 2014, 114, 1871.
[4] (a) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615.
(b) Wang, F.; Chen, P.; Liu, G. S. Acc. Chem. Res. 2018, 51, 2036.
(c) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A.; Lei, A. Chem. Rev. 2017, 117, 9016.
(d) Zhao, Y.; Liu, Z. Chin. J. Chem. 2018, 36, 455.
(e) Tan, F.; Yin, G. Chin. J. Chem. 2018, 36, 545.
(f) Cao, Y.; He, X.; Wang, N.; Li, H.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
[5] (a) Wang, H.; Wu, P.; Zhao, X.; Zeng, J.; Wan, Q. Acta Chim. Sinica 2019, 77, 231(in Chinese). (王浩, 吴品儒, 赵祥, 曾静, 万谦, 化学学报, 2019, 77, 231.)
(b) Chen, Y.; Chang, L.; Zuo, Z. Acta Chim. Sinica 2019, 77, 794(in Chinese). (陈奕霖, 常亮, 左智伟, 化学学报, 2019, 77, 794.)
(c) Ye, S.; Wu, J. Acta Chim. Sinica 2019, 77, 814(in Chinese). (叶盛青, 吴劼, 化学学报, 2019, 77, 814.)
(d) Zhang, H.-H.; Yu, S. Acta Chim. Sinica 2019, 77, 832(in Chinese). (张洪浩, 俞寿云, 化学学报, 2019, 77, 832.)
(e) Ren, L.; Ran, M.; He, J.; Qian, Y.; Yao, Q. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese). (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)
[6] (a) Zhao, B.; Tan, H.; Chen, C.; Jiao, N.; Shi, Z. Chin. J. Chem. 2018, 36, 995.
(b) Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Curran, D.; Zhang, Z. Chin. J. Chem. 2018, 36, 1035.
(c) Li, C.; Qi, Z.; Yang, Q.; Qiang, X.-Y.; Yang, S.-D. Chin. J. Chem. 2018, 36, 1052.
(d) An, X.; Zhang, H.; Xu, Q.; Yu, L.; Yu, S. Chin. J. Chem. 2018, 36, 1147.
(e) Xu, W.; Dai, X.; Xu, H.; Weng, J. Chin. J. Org. Chem. 2018, 38, 2807(in Chinese). (徐雯秀, 戴小强, 徐涵靖, 翁建全, 有机化学, 2018, 38, 2807.)
(f) Ruan, L; Chen, C.; Zhang, X.; Sun, J. Chin. J. Org. Chem. 2018, 38, 3155(in Chinese). (阮利衡, 陈春欣, 张晓欣, 孙京, 有机化学, 2018, 38, 3155.)
[7] Sun, A.; C.; McAtee, R. C.; McClain, E. J.; Stephenson, C. R. J. Synthesis 2019, 51, 1063.
[8] Murarka, S. Adv. Synth. Catal. 2018, 360, 1735.
[9] Xuan, J.; Zhang, Z. G.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 15632.
[10] Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 10886.
[11] Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun. 2013, 49, 7854.
[12] Millet, A.; Lefebvre, Q.; Rueping, M. Chem.-Eur. J. 2016, 22, 13464.
[13] Ramirez, N.; Gonzalez-Gomez, J. Eur. J. Org. Chem. 2017, 2154.
[14] Chinzei, T.; Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. RSC Adv. 2015, 5, 21297.
[15] Bloom, S.; Liu, C.; Kölmel, D.; Qiao, J.; Zhang, Y.; Poss, M.; Ewing, W.; MacMillan, D. W. C. Nat. Chem. 2018, 10, 205.
[16] Kölmel, D. K.; Loach, R. P.; Knauber, T.; Flanagan, M. E. ChemMedChem 2018, 13, 2159.
[17] Chen, J.-Q.; Chang, R.; Wei, Y.-L.; Mo, J.-N.; Wang, Z.-Y.; Xu, P.-F. J. Org. Chem. 2018, 83, 253.
[18] Xiao, T.; Li, L.; Zhou, L. J. Org. Chem. 2016, 81, 7908.
[19] Noble, A.; Mega, R. S.; Pflästerer, D.; Myers, E.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2018, 57, 2155.
[20] Guo, T.; Zhang, Y.; Fang, Y.; Jin, X.; Li, Y.; Li, R.; Li, X.; Cen, W.; Liu, X.; Tian, Z. Adv. Synth. Catal. 2018, 360, 1352.
[21] Yin, Y.; Dai, Y.; Jia, H.; Li, J.; Bu, L.; Qiao, B.; Zhao, X.; Jiang, Z. J. Am. Chem. Soc. 2018, 140, 6083.
[22] Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401.
[23] Schnermann, N.; Overman, L. E. Angew. Chem., Int. Ed. 2012, 51, 9576.
[24] Pratsch,G.; Lackner, G. L.; Overman, L. E. J. Org. Chem. 2015, 80, 6025.
[25] Hu, C.; Chen, Y. Org. Chem. Front. 2015, 2, 1352.
[26] Schwarz, J.; König, B. Green Chem. 2016, 18, 4743.
[27] Jin, Y.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 6400.
[28] Noble, A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 11602.
[29] Cao, H.; Jiang, H.; Feng, H.; Kwan, J.; Liu, X.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360.
[30] Zheng, C.; Chen, W.; Li, H.; Na, R.; Shang, R. Org. Lett. 2018, 20, 2559.
[31] Till, N. A.; Smith, R. T.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 5701.
[32] Zhang, J.; Yang, J.; Guo, L.; Duan, X. Chem.-Eur. J. 2017, 23, 10259.
[33] Xu, K.; Tan, Z.; Zhang, H.; Liu, J.; Zhang, S.; Wang, Z. Chem. Commun. 2017, 53, 10719.
[34] Wang, G.; Shang, R.; Fu, Y. Org. Lett. 2018, 20, 888.
[35] Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.; Daniliuc, C.; Glorius, F. Chem.-Eur. J. 2018, 24, 4552.
[36] Jin, C.; Yan, Z.; Sun, B.; Yang, J. Org. Lett. 2019, 21, 2064.
[37] Dai, G.; Lai, S.; Luo, Z.; Tang, Z. Org. Lett. 2019, 21, 2269.
[38] Li, Y.; Ge, L.; Qian, B.; Babu, K. R.; Bao, H. Tetrahedron Lett. 2016, 57, 5677.
[39] Zhou, Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.; Xiao, W. Angew. Chem., Int. Ed. 2015, 54, 11196.
[40] Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51, 5275.
[41] Tlahuext-Aca, A.; Garza-Sanchez, R.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 3708.
[42] Ge, L.; Li, Y.; Jian, W.; Bao, H. Chem.-Eur. J. 2017, 23, 11767.
[43] Quyang, X.; Li, Y.; Song, R.; Li, J. Org. Lett. 2018, 20, 6659.
[44] Tlahuext-Aca, A.; Garza-Sanchez, A.; Schäfer, M.; Glorius, F. Org. Lett. 2018, 20, 1546.
[45] Xia, Z.; Zhang, C.; Gao, Z.; Ye, S. Org. Lett. 2018, 20, 3496.
[46] Kong, W.; Yu, C.; An, H.; Song, Q. Org. Lett. 2018, 20, 349.
[47] Sha, W.; Deng, L.; Ni, S.; Mei, H.; Han, J.; Pan, Y. ACS Catal. 2018, 8, 7489.
[48] Chen, L.; Chao, C.; Pan, Y.; Dong, S.; Teo, Y.; Wang, J.; Tan, C. Org. Biomol. Chem. 2013, 11, 5922.
[49] Shu, C.; Mega, R. S.; Andreassen, B. J.; Noblem A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2018, 57, 15430.
[50] He, Z.; Bae, M.; Wu, J.; Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 14451.
[51] Yu, Y.; Yuan, W.; Huang, H.; Cai, Z.; Liu, P.; Sun, P. J. Org. Chem. 2018, 83, 1654.
[52] Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672.
[53] Tang, Q.; Liu, X.; Liu, S.; Xie, H.; Liu, W.; Zeng, J.; Cheng, P. RSC Adv. 2015, 5, 89009.
[54] Sha, W.; Ni, S.; Han, J.; Pan, Y. Org. Lett. 2017, 19, 5900.
[55] Yao, S.; Zhang, K.; Zhou, Q.; Zhao, Y.; Shi, D.; Xiao, W. Chem. Commun. 2018, 54, 8096.
[56] Kachkovskyi, G.; Faderl, C.; Reiser, O. Adv. Synth. Catal. 2013, 355, 2240.
[57] Yang, J.; Zhang, J.; Zhang, J.; Duan, X.; Gao, L. J. Org. Chem. 2018, 83, 1598.
[58] Liu, L.; Dong, J.; Yan, Y.; Yin, S.; Han, L.; Zhou, Y. Chem. Commun. 2019, 55, 233.
[59] Garza-Sanchez, A.; Tlahuext-Aca, A.; Glorius, F. ACS Catal. 2017, 56, 12336.
[60] Koeller, J.; Gandeepan, P.; Ackermann, L. Synthesis 2019, 51, 1284.
[61] Tian, W.-F.; Hu, C.-H.; He, K.-N.; He, X.-Y.; Li, Y. Org. Lett. 2019, 21, 6930.
[62] Wang, B.; Li, P.; Miao, T.; Zou, L.; Wang, L. Org. Biomol. Chem. 2019, 17, 115.
[63] Zhang, X.-Y.; Weng, W.-Z.; Liang, H.; Yang, H.; Zhang, B. Org. Lett. 2018, 20, 4686.
[64] Chen, W.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907.
[65] Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem.-Eur. J. 2017, 23, 2537.
[66] Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
[67] Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298.
[68] Sherwood, T. C.; Li, N.; Yazdani, A. N.; Murali Dhar, T. G. J. Org. Chem. 2018, 83, 3000.
[69] Kammer, L. M.; Rahman, A.; Opatz, T. Molecules 2018, 23, 764.
[70] Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.
[71] Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 5257.
[72] Lang, S.; O’Nele, K.; Tunge, J. J. Am. Chem. Soc. 2014, 136, 13606.
[73] Li, J.; Lefebvre, Q.; Yang, H.; Zhao, Y.; Fu, H. Chem. Commun. 2017, 53, 10299.
[74] Yang, H.; Tian, C.; Qiu, D.; Tian, H.; An, G.; Li, G. Org. Chem. Front. 2019, 6, 2365.
[75] Guo, J.; Wu, Q.; Xie, Y.; Weng, J.; Lu, G. J. Org. Chem. 2018, 83, 12559.
[76] Ren, L.; Cong, H. Org. Lett. 2018, 20, 3225.
[77] Wang, C.; Guo, M.; Qi, R. Shang, Q.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2018, 26, 15841.
[78] Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
[79] Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.
[80] Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 1832.
[81] Oderinde, M. S.; Varela-Alvarez, A.; Aquila, B.; Robbins, D. W.; Johannes, J. W. J. Org. Chem. 2015, 80, 7642.
[82] Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
[83] McTiernan, C. D.; Leblanc, X.; Scaiano, J. C. ACS Catal. 2017, 7, 2171.
[84] Suen, L. M.; Wang, C.; Hunter, D. N.; Mitchell, H. J.; Cnverso, A.; ElMarrouni, A. Synthesis 2018, 50, 3177.
[85] Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 10, 6522.
[86] Zhnag, H.; Zhang, P.; Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2017, 19, 1016.
[87] Mao, R.; Frey, A.; Balon, J.; Hu, X. Nat. Catal. 2018, 1, 120.
[88] Liang, Y.; Zhang, X.; MacMillan, D. W. C. Nature 2018, 559, 83.
[89] Rueda-Becerril, M.; Mahe, O.; Drouin, M.; Majewski, M. B.; West, J. G.; Wolf, M. O.; Sammis, G. M.; Paquin, J. F. J. Am. Chem. Soc. 2014, 136, 2637.
[90] Ventre, S.; Petronijevi, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654.
[91] Wu, X.; Meng, C.; Yuan, X.; Jia, X.; Qian, X.; Ye, J. Chem. Commun. 2015, 51, 11864.
[92] Lang, S. B.; Cartwright, K. C.; Welter, R. S.; Locascio, T. M.; Tunge, J. A. Eur. J. Org. Chem. 2016, 3331.
[93] Davies, J.; Angelini, L.; Alkhalifah, M. A.; Sanz, L. M.; Sheikh, N. S.; Leonori, D. Synthesis 2018, 50, 821.
[94] Hu, D.; Wang, L.; Li, P. Org. Lett. 2017, 19, 2770.
[95] Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E.; Aggarwal, V. K. Science 2017, 357, 283.
[96] Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 1968.
[97] Jin, Y.; Yang, H.; Fu, H. Chem. Commun. 2016, 52, 12909.
文章导航

/