研究专题

基于配位辅助的烯烃催化不对称炔氢化

  • 张雯雯 ,
  • 王紫璇 ,
  • 白小燕 ,
  • 李必杰
展开
  • 清华大学化学系基础分子科学中心 北京 100084

收稿日期: 2020-02-16

  修回日期: 2020-03-08

  网络出版日期: 2020-03-31

基金资助

青年千人计划资助项目.

Substrate-Directed Catalytic Asymmetric Hydroalkynylation of Alkenes

  • Zhang Wenwen ,
  • Wang Zixuan ,
  • Bai Xiaoyan ,
  • Li Bijie
Expand
  • Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2020-02-16

  Revised date: 2020-03-08

  Online published: 2020-03-31

Supported by

Project supported by the Thousand Young Talents Program.

摘要

烯烃的不对称氢官能团化是一个重要的研究方向.从简单的烯烃原料出发,通过该方法可以高效构建手性分子.多取代烯烃的不对称氢官能团化仍然是一个挑战.一方面,烯烃有两个反应位点,反应的区域选择性需要进行有效的控制.另一方面,如果反应生成了多个手性中心,则涉及到非对映选择性的控制.此外,还需要控制反应的对映选择性.因此,此类研究的关键在于如何发展有效的催化体系,以同时实现区域选择性、非对映选择性及对映选择性的高效控制.针对这一问题,我们采用配位辅助策略,利用底物中的配位基团及烯烃与金属中心形成双位点配位模式,从而有效控制烯烃转化的区域选择性及立体选择性.以烯烃不对称炔氢化作为模型转化,以研究多取代烯烃催化不对称转化中的选择性控制.

本文引用格式

张雯雯 , 王紫璇 , 白小燕 , 李必杰 . 基于配位辅助的烯烃催化不对称炔氢化[J]. 有机化学, 2020 , 40(5) : 1087 -1095 . DOI: 10.6023/cjoc202002017

Abstract

Catalytic asymmetric hydrofunctionalization of alkene is an important research field, which enables efficient construction of chiral molecules from readily available starting materials. Asymmetric hydrofunctionalization of multiple substituted alkenes represents a significant challenge to organic chemists because this process involves the simutaneous control of regio-, diastereo-, and enantio-selectivities. The key to solve this challenge is to identify novel catalyst systems to exert powerful regio- and stereo-control. Recently, by taking advantage of substrate-directed strategy, we have developed a number of alkene functionalization methods with excellent regio-, diastereo-, and enantio-selectivities. In particular, we focus on catalytic asymmetric hydroalkynylation of alkenes as a model transformation to analyze the factors that control the selectivity.

参考文献

[1] Wang, J. Stereoselective Alkene Synthesis; Springer-Verlag, Berlin/Heidelberg, 2012.
[2] (a) Coombs, J. R.; Morken, J. P. Angew. Chem. Int. Ed. 2016, 55, 2636.
(b) Chen, J. H.; Lu, Z. Org. Chem. Front. 2018, 5, 260.
(c) Dhungana, R. K.; Kc, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18, 1314.
(d) Zhang, J.-S.; Liu, L.; Chen, T.; Han, L.-B. Chem. Asian J. 2018, 13, 2277.
(e) Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Angew. Chem., Int. Ed. 2019, 58, 1562.
(f) Li, S.; Li, Z.; You, C.; Lü, H.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 1568.
(g) Cheng, L.; Xie, J. Chin. J. Org. Chem. 2020, 40, 247.
(h) Zhou, Q.; Feng, X,; Yang, J.; Du, H. Chin. J. Org. Chem. 2019, 39, 2188.
[3] Wang, Z.-X.; Bai, X.-Y.; Li, B.-J. Chin. J. Chem. 2019, 37, 1174.
[4] (a) Knöpfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 9682.
(b) Nishimura, T.; Guo, X.-X.; Uchiyama, N.; Katoh, T.; Hayashi, T. J. Am. Chem. Soc. 2008, 130, 1576.
(c) Yazaki, R.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 10275.
(d) Shirakura, M.; Suginome, M. Angew. Chem. Int. Ed. 2010, 49, 3827.
(e) Fan, B.-M.; Yang, Q.-J.; Hu, J.; Fan, C.-L.; Li, S.-F.; Yu, L.; Huang, C.; Tsang, W. W.; Kwong, F. Y. Angew. Chem., Int. Ed. 2012, 51, 7821.
(f) Sawano, T.; Ou, K.; Nishimura, T.; Hayashi, T. Chem. Commun. 2012, 48, 6106.
(g) Blay, G.; Pedro, J. R.; Sanz-Marco, A. Synthesis 2018, 50, 3281.
(h) Zhi, Y.; Huang, J.; Liu, N.; Lu, T.; Dou, X. Org. Lett. 2017, 19, 2378.
[5] (a) Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140, 10965.
(b) Yeqiang, H.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
(c) Dong, X.-Y.; Zhang, Y.-F.; Ma, C.-L.; Gu, Q.-S.; Wang, F.-L.; Li, Z.-L.; Jiang, S.-P.; Liu, X.-Y. Nat. Chem. 2019, 11, 1158.
(d) Chen, Q.; Tang, Y.; Huang, T.; Liu, X.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2016, 55, 5286.
[6] (a) Trost, B. M., Li, C.-J. Modern Alkyne Chemistry:Catalytic and Atom-Economic Transformations, Wiley, New York, 2014.
(b) Li, Y.; Liu, X.; Jiang, H.; Liu, B.; Chen, Z.; Zhou, P. Angew. Chem., Int. Ed. 2011, 50, 6341.
(c) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019, 48, 2615.
(d) Hong, F.-L.; Wang, Z.-S.; Wei, D.-D.; Zhai, T.-Y.; Deng, G.-C.; Lu, X.; Liu, R.-S.; Ye, L.-W. J. Am. Chem. Soc. 2019, 141, 16961.
(e) Zhu, D.; Chen, L.; Zhang, H.; Ma, Z.; Jiang, H.; Zhu, S. Angew. Chem., Int. Ed. 2018, 57, 12405.
(f) Ren, R.; Wu, Z.; Xu, Y.; Zhu, C. Angew. Chem., Int. Ed. 2016, 55, 2866.
(g) Shen, T.; Wang, T.; Qin, C.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 6677.
(h) Xu, G.; Zhao, H.; Fu, B.; Cang, A.; Zhang, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Angew. Chem., Int. Ed. 2017, 56, 13130.
(i) Wang, Q.; Yu, X.; Jin, J.; Wu, Y.; Liang, Y. Chin. J. Chem. 2018, 36, 223.
(j) Jiang, Z.; Lu, P.; Wang, Y. Org. Lett. 2012, 14, 6266.
(k) Zhu, C.; Chu, H.; Li, G.; Ma, S.; Zhang, J. J. Am. Chem. Soc. 2019, 141, 19246.
[7] Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry, Wiley-VCH, Weinheim, 2005.
[8] (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
(b) Winstein, S.; Sonnenberg, J.; De Vries, L. J. Am. Chem. Soc. 1959, 81, 6523.
(c) Winstein, S.; Sonnenberg, J. J. Am. Chem. Soc. 1961, 83, 3235.
[9] Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958.
[10] (a) Thompson, H. W.; McPherson, E. J. Am. Chem. Soc. 1974, 96, 6232.
(b) Crabtree, R. H.; Davis, M. W. J. Org. Chem. 1986, 51, 2655.
[11] (a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(b) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2017, 50, 988.
[12] (a) Evans, D. A.; Fu, G. C. J. Am. Chem. Soc. 1991, 113, 4042.
(b) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198.
(c) Bochat, A. J.; Shoba, V. M.; Takacs, J. M. Angew. Chem., Int. Ed. 2019, 58, 9434.
[13] Kawasaki, Y.; Ishikawa, Y.; Igawa, K.; Tomooka, K. J. Am. Chem. Soc. 2011, 133, 20712.
[14] (a) Willis, M. C. Chem. Rev. 2010, 110, 725.
(b) Murphy, S. K.; Bruch, A.; Dong, V. M. Angew. Chem., Int. Ed. 2014, 53, 2455.
[15] (a) Albrecht, M. Chem. Rev. 2010, 110, 576.
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(c) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
(d) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
[16] Wang, M.-X. Chem. Commun. 2015, 51, 6039.
[17] (a) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.
(b) Gooßen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem., Int. Ed. 2005, 44, 4042.
[18] Sakaki, S.; Mizoe, N.; Sugimoto, M. Organometallics 1998, 17, 2510.
[19] Sakaki, S.; Sumimoto, M.; Fukuhara, M.; Sugimoto, M.; Fujimoto, H.; Matsuzaki, S. Organometallics 2002, 21, 3788.
[20] Bai, X. Y.; Zhang, W. W.; Li, Q.; Li, B.-J. J. Am. Chem. Soc. 2018, 140, 506.
[21] Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2012, 41, 3790.
[22] Hartwig, J. F. Organotransition Metal Chemistry:From Bonding to Catalysis, University Science Books, Sausalito, CA, 2010.
[23] Bai, X.-Y.; Wang, Z.-X.; Li, B.-J. Angew. Chem., Int. Ed. 2016, 55, 9007.
[24] Ding, C. H.; Hou, X. L. Chem. Rev. 2011, 111, 1914.
[25] Yu, Z.; Meng, L.; Lin, Z. Organometallics 2019, 38, 2998.
[26] Rössler, S. L.; Petrone, D. A.; Carreira, E. M. Acc. Chem. Res. 2019, 52, 2657.
[27] Zhang, W.-W.; Zhang, S.-L.; Li, B.-J. Angew. Chem., Int. Ed. 2020, 59, 6874.
[28] (a) Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2017, 139, 5627.
(b) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
(c) Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.
(d) Zhang, Q.; Yu, H.; Shen, L.; Tang, T.; Dong, D.; Chai, W.; Zi, W. J. Am. Chem. Soc. 2019, 141, 14554.
[29] (a) Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340.
(b) Liu, W.-B.; Okamoto, N.; Alexy, E. J.; Hong, A. Y.; Tran, K.; Stoltz, B. M. J. Am. Chem. Soc. 2016, 138, 5234.
(c) Guo, C.; Fleige, M.; Janssen-Muller, D.; Daniliuc, C. G.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.
[30] Wang, Z.-X.; Bai, X.-Y.; Yao, H.-C.; Li, B.-J. J. Am. Chem. Soc. 2016, 138, 14872.
[31] Li, Y.; Wu, D.; Cheng, H.-G.; Yin, G. Angew. Chem., Int. Ed. 2020, 59, 7990.
[32] (a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
(b) Feng, J.; Holmes, M.; Krische, M. J. Chem. Rev. 2017, 117, 12564.
(c) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.
[33] Wang, Z.-X.; Li, B.-J. J. Am. Chem. Soc. 2019, 141, 9312.
[34] (a) Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong, H.; He, G.; Peng, Q.; Chen, G. J. Am. Chem. Soc. 2018, 140, 3542.
(b) Liu, Z.; Li, X.; Zeng, T.; Engle, K. M. ACS Catal. 2019, 3260.
(c) Shen, H.-C.; Zhang, L.; Chen, S.-S.; Feng, J.; Zhang, B.-W.; Zhang, Y.; Zhang, X.; Wu, Y.-D.; Gong, L.-Z. ACS Catal. 2019, 9, 791.
(d) Nimmagadda, S. K.; Liu, M.; Karunananda, M. K.; Gao, D. W.; Apolinar, O.; Chen, J. S.; Liu, P.; Engle, K. M. Angew. Chem., Int. Ed. 2019, 58, 3923.
(e) Vanable, E. P.; Kennemur, J. L.; Joyce, L. A.; Ruck, R. T.; Schultz, D. M.; Hull, K. L. J. Am. Chem. Soc. 2019, 141, 739.
(f) Tang, C.; Zhang, R.; Zhu, B.; Fu, J.; Deng, Y.; Tian, L.; Guan, W.; Bi, X. J. Am. Chem. Soc. 2018, 140, 16929.
文章导航

/