综述与进展

无过渡金属的烯烃和芳烃C—H键的巯基化反应

  • 徐鑫明 ,
  • 杨翰林 ,
  • 李文忠
展开
  • a 烟台大学化学化工学院 山东烟台 264005

收稿日期: 2019-12-31

  修回日期: 2020-03-16

  网络出版日期: 2020-04-09

基金资助

国家自然科学基金(No.21901220)、烟台大学青年博士基金(No.HY19B06)资助项目.

Transition Metal-Free Direct C-H Bond Sulfenylation of Alkenes and Arenes

  • Xu Xinming ,
  • Yang Hanlin ,
  • Li Wenzhong
Expand
  • a College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005

Received date: 2019-12-31

  Revised date: 2020-03-16

  Online published: 2020-04-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 21901220), and the Young Scholars Research Fund of Yantai University (No. HY19B06).

摘要

由于其广泛存在于天然产物、生物活性分子及功能有机材料中,芳基和烯基硫化物受到医学与化学科学家们的广泛关注,其合成也得到了快速发展.在众多合成方法中,通过无过渡金属催化的C—H键巯基化反应来构筑C—S键是最为理想的,并且已经展现出其应用前景.近些年,关于该合成策略的研究层出不穷,许多精致的合成方法得到发展,一系列巯基化的芳烃或烯烃被合成.该综述介绍了近五年关于芳烃和烯烃在无过渡金属催化条件下的巯基化反应的研究进展,并阐述相应的反应机理.

本文引用格式

徐鑫明 , 杨翰林 , 李文忠 . 无过渡金属的烯烃和芳烃C—H键的巯基化反应[J]. 有机化学, 2020 , 40(7) : 1912 -1925 . DOI: 10.6023/cjoc201912044

Abstract

Aryl and vinyl sulfides have attracted much attention from medical and organic chemists because they are prevalent in natural or bioactive molecules and other potential functional organic materials. Therefore, considerable efforts have been made for the construction of aryl and vinyl sulfides, among them transition metal-free direct C-H bond sulfenylation has developed rapidly and became an efficient and eco-friendly synthetic protocol. In recent years, many excellent research achievements were presented and a range of sulfenylated alkenes and arenes were synthesized using this strategy. The recent five-year progress in direct sulfenylation of C-H bond on alkenes and arenes under transition metal-free conditions is reviewed and the corresponding reaction mechanisms are discussed.

参考文献

[1] (a) Kvasnika, M.; Urban, M.; Dickinson, N. J.; Sarek, J. Nat. Prod. Rep. 2015, 32, 1303.
(b) Meng, D.; Chen, W.; Zhao, W. J. Nat. Prod. 2007, 70, 824.
(c) Cremlyn, R. J. An Introduction to Organosulfur Chemistry, Wiley, New York, 1996.
(d) Iino, H.; Usui, T.; Hanna, J.-I. Nat. Commun. 2015, 5, 6828.
(e) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 11, 1596.
[2] (a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
(b) Kim, S.; Dahal, N.; Kesharwani, T. Tetrahedron Lett. 2013, 54, 4373.
[3] (a) Boyd, D. A. Angew. Chem., Int. Ed. 2016, 55, 15486.
(b) Wu, D.; Pisula, W.; Haberecht, M. C.; Feng, X.; Müllen, K. Org. Lett. 2009, 11, 5686.
(c) Yang, S. M.; Shie, J. J.; Fang, J. M.; Nandy, S. K.; Chang, Y. Y. J. Org. Chem. 2002, 67, 5208.
[4] (a) Carretero, J. C. Chem. Commun. 2011, 47, 2207.
(b) Pellisier, H. RSC Catalysis Series 2, Royal Society of Chemistry, Cambridge, 2009.
[5] (a) Kausar, A.; Zulfiqar, S.; Sarwar, M. I. Pol. Rev. 2014, 54, 185.
(b) Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Rev. Chem. Eng. 2013, 29, 471.
(c) Spassky, N. Phosphorus Sulfur Silicon Relat. Elem. 1993, 74, 71.
[6] (a) Hartwig, J. F. Nature 2008, 455, 314.
(b) Lu, Q.; Zhang, J.; Wei, F. L.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156.
(c) Lu, Q.-Q.; Zhang, J.; Zhao, G.-L.; Qi, Y.; Wang, H.-M.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
[7] (a) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007, 2007, 3431.
(b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
(c) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
[8] (a) Zhang, S.-N.; Yang, S.-H.; Huang, L.-H.; Zhao, B.-L.; Cheng, K.; Qi, C.-Z. Chin. J. Org. Chem. 2015, 35, 2259(in Chinese). (张诗浓, 杨胜虎, 黄乐浩, 赵保丽, 程凯, 齐陈泽, 有机化学, 2015, 35, 2259.)
(b) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. J. Org. Chem. 2019, 39, 3338(in Chinese). (徐鑫明, 陈德茂, 王祖利, 有机化学, 2019, 39, 3338.)
(c) Dalpozzo, R. Org. Chem. Front. 2017, 4, 2063.
(d) Freckleton, M.; Baeza, A.; Benavent, L.; Chinchilla, R. Asian J. Org. Chem. 2018, 7, 1006.
(e) Sun, J.; Qiu, J.-K.; Zhu, Y.-L.; Guo, C.; Hao, W.-J.; Jiang, B.; Tu, S.- J. J. Org. Chem. 2015, 80, 8217.
(f) Sun, J.; Qiu, J.-K.; Jiang, B.; Hao, W.-J.; Guo, C.; Tu, S.-J. J. Org. Chem. 2016, 81, 3321.
[9] (a) Liu, Y.-Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667(in Chinese). (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667.)
(b) Dong, D.-Q.; Hao, S.-H.; Yang, D.-S.; Li, L.-X.; Wang, Z.-L. Eur. J. Org. Chem. 2017, 2017, 6576.
(c) Xu, X.-M.; Li, J.; Wang, Z.-L. Chin. J. Org. Chem. 2020, 40, 886(in Chinese). (徐鑫明, 李家柱, 王祖利, 有机化学, 2020, 40, 886.)
(d) Jin, C.-A.; Xu, Q.; Feng, G.-F.; Jin, Y.; Zhang, L.-Y. Chin. J. Org. Chem. 2018, 38, 775(in Chinese). (金城安, 徐庆, 冯高峰, 金阳, 张连阳, 有机化学, 2018, 38, 775.)
(e) Xu, X.-M.; Chen, D.-M.; Wang, Z.-L. Chin. Chem. Lett. 2020, 31, 49.
[10] (a) Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R. E. P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. J. Nat. Prod. 2007, 70, 439.
(b) Nielsen, S. F.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med. Chem. 2000, 43, 2217.
(c) Mori, T.; Nishimura, T.; Yamamoto, T.; Doi, I.; Miyazaki, E.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2013, 135, 13900.
[11] (a) Varun, B. V.; Gadde, K.; Prabhu, K. R. Org. Lett. 2015, 17, 2944.
(b) Cao, H.; Yuan, J.; Liu, C.; Hu, X.-Q.; Lei, A.-W. RSC Adv. 2015, 5, 41493.
(c) Siddaraju, Y.; Prabhu, K. R. Org. Lett. 2016, 18, 6090.
(d) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2018, 83, 2986.
(e) Wang, D.; Liu, Z.; Wang, Z.; Ma, X.; Yu, P. Green Chem. 2019, 21, 157.
(f) Chen, Q.; Yu, G.; Wang, X.; Ou, Y.; Huo, Y. Green Chem. 2019, 21, 798.
[12] (a) Ohkado, R.; Ishikawa, T.; Iida, H. Green Chem. 2018, 20, 984.
(b) Guo, W.; Tan, W.; Zhao, M.; Tao, K.; Zheng, L.-Y.; Wu, Y.; Chen, D.; Fan, X.-L. RSC Adv. 2017, 7, 37739.
(c) Zhang, H.; Bao, X.; Song, Y.; Qu, J.; Wang, B. Tetrahedron 2015, 71, 8885.
(d) Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.
[13] (a) Hiebel, M.; Berteina-Raboin, S. Green Chem. 2015, 17, 937.
(b) Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2016, 81, 7838.
(c) Iida, H.; Demizu, R.; Ohkado, R. J. Org. Chem. 2018, 83, 12291.
(d) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.
(e) Rahaman, R.; Das, S.; Barman, P. Green Chem. 2018, 20, 141.
[14] Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068.
[15] Wang, H.-H.; Shi, T.; Gao, W.-W.; Wang, Y.-Q.; Li, J.-F.; Jiang, Y.; Hou, Y.-S.; Chen, C.; Peng, X.; Wang, Z. Chem. Asian J. 2017, 12, 2675.
[16] Xiao, F.-H.; Tian, J.-X.; Xing, Q.-Y.; Huang, H.-W.; Deng, G.-J.; Liu, Y.-J. ChemistrySelect 2017, 2, 428.
[17] (a) Shanmugapriya, J.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. Eur. J. Org. Chem. 2016, 2016, 1963.
(b) Huang, W.; Yang, G.-F. Bioorg. Med. Chem. 2006, 14, 8280.
[18] Kong, D.-L.; Huang, T.; Liang, M.; Wu, M.-S.; Lin, Q. Org. Biomol. Chem. 2019, 17, 830.
[19] Fan, W.; Chen, K.-Y.; Chen, Q.-P.; Li, G.-G.; Jiang, B. Org. Biomol. Chem. 2017, 15, 6493.
[20] (a) Liu, Y.; Badsara, S. S.; Liu, Y.; Lee, C. RSC Adv. 2015, 5, 44299.
(b) Devi, N.; Rahaman, R.; Sarma, K.; Khan, T.; Barman, P. Eur. J. Org. Chem. 2017, 2017, 1520.
(c) Rafique, J.; Saba, S.; Rosrio, A. R.; Braga, A. L. Chem. Eur. J. 2016, 22, 79.
(d) Ji, X.-M.; Zhou, S.-J.; Chen, F.; Zhang, X.-G.; Tang, R.-Y. Synthesis 2015, 47, 659.
[21] Rodrigues, J.; Saba, S.; Joussef, A. C.; Rafique, J.; Braga, A. L. Asian J. Org. Chem. 2018, 5, 1819.
[22] Hazarika, S.; Gogoi, P.; Barman, P. RSC Adv. 2015, 5, 25765.
[23] Kawashima, H.; Yanagi, T.; Wu, C.-C.; Nogi, K.; Yorimitsu, H. Org. Lett. 2017, 19, 4552.
[24] Hostier, T.; Ferey, V.; Ricci, G.; Pardo, D. G.; Cossy, J. Org. Lett. 2015, 17, 3898.
[25] Nalbandian, C. J.; Brown, Z. E.; Alvarez, E.; Gustafson, J. L. Org. Lett. 2018, 20, 3211.
[26] Böhm, M. J.; Golz, C.; Rüter, I.; Alcarazo, M. Chem.-Eur. J. 2018, 24, 15026.
[27] (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(c) Wang, J.; Sánchez-Roselló, M.; Aceña, J.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(d) Landelle, G.; Panossian, A.; Leroux, F. R. Curr. Top. Med. Chem. 2014, 14, 941.
[28] (a) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415.
(b) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227.
(c) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(d) Chachignon, H.; Cahard, D. Chin. J. Chem. 2016, 34, 445.
[29] Jereb, M.; Gosak, K. Org. Biomol. Chem. 2015, 13, 3103.
[30] Horvat, M.; Jereb, M.; Iskra, J. Eur. J. Org. Chem. 2018, 2018, 3837.
[31] Bonazaba Milandou, L. J. C.; Carreyre, H.; Alazet, S.; Greco, G.; Martin-Mingot, A.; Ouamba, J.-M.; Bouazza, F.; Billard, T.; Thibaudeau, S. Angew. Chem., Int. Ed. 2017, 56, 169.
[32] Liu, S.; Zeng, X.; Xu, B. Asian J. Org. Chem. 2019, 8, 1372.
[33] Lu, S.; Chen, W.; Shen, Q. Chin. Chem. Lett. 2019, 30, 2279.
[34] Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q. J. Org. Chem. 2016, 81, 7486.
[35] Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. M. RSC Adv. 2015, 5, 108030.
[36] Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. Green Chem. 2016, 18, 1538.
[37] Xu, Z.; Lu, G.; Cai, C. Org. Biomol. Chem. 2017, 15, 2804.
[38] Lin, Y.-M.; Lu, G.-P.; Wang, G.-X.; Yi, W.-B. Adv. Synth. Catal. 2016, 358, 4100.
[39] Yan, Q.; Jiang, L.; Yi, W.-B.; Liu, Q.; Zhang, W. Adv. Synth. Catal. 2017, 359, 2471.
[40] Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 934.
[41] (a) Zhao, X.; Wei, A.; Yang, B.; Li, T.; Li, Q.; Qiu, D.; Lu, K. J. Org. Chem. 2017, 82, 9175.
(b) Zhao, X.; Zheng, X.; Tian, M.; Sheng, J.; Tong, Y.; Lu, K. Tetrahedron 2017, 73, 7233.
[42] Chachignon, H.; Maeno, M.; Kondo, H.; Shibata, N.; Cahard, D. Org. Lett. 2016, 18, 2467.
[43] Liu, J.; Zhao, X.; Jiang, L.; Yi, W.-B. Adv. Synth. Catal. 2018, 360, 4012.
[44] Fernandez-Salas, J.; Pulis, A.; Procter, D. J. Chem. Commun. 2016, 52, 12364.
[45] Chen, D.; Feng, Q.; Yang, Y.; Cai, X.; Wang, F.; Huang, S. Chem. Sci. 2017, 8, 1601.
[46] (a) Yang, X.; Yan, R. Org. Biomol. Chem. 2017, 15, 3571.
(b) Wang, T.; Yang, F.; Tian, S. Adv. Synth. Catal. 2015, 357, 928.
(c) Rahaman, R.; Devi, N.; Sarmaa, K.; Barman, P. RSC Adv. 2016, 6, 10873.
(d) Bagdi, A. K.; Mitra, S.; Ghosh, M.; Hajra, A. Org. Biomol. Chem. 2015, 13, 3314.
(e) Rong, G.; Mao, J.; Yan, H.; Zheng, Y.; Zhang, G. J. Org. Chem. 2015, 80, 4697.
[47] Pang, X.; Xiang, L. K.; Yang, X. D.; Yan, R. L. Adv. Synth. Catal. 2016, 358, 321.
[48] Zhao, X.; Li, T. J.; Zhang, L. P.; Lu, K. Org. Biomol. Chem. 2016, 14, 1131.
[49] Zhao, X.; Deng, Z. J.; Wei, A. Q.; Li, B. Y.; Lu, K. Org. Biomol. Chem. 2016, 14, 7304.
[50] (a) Wang, D. Y.; Guo, S. M.; Zhang, R. X.; Lin, S.; Yan, Z. H. RSC Adv. 2016, 6, 54377.
(b) Wang, D. Y.; Zhang, R. X.; Lin, S.; Deng, R. H.; Yan, Z. H. Chin. J. Org. Chem. 2016, 36, 2757(in Chinese). (王丁意, 张荣兴, 林森, 邓瑞红, 严兆华, 有机化学, 2016, 36, 2757.)
[51] Li, J.; Zhu, D.; Lv, L.; Li, C.-J. Chem. Sci. 2018, 9, 5781.
[52] Liu, P.; Liu, W.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 14315.
[53] (a) Wadman, M. Nature 2006, 440, 277
(b) Williams, R. B.; Norris, A.; Slebodnick, C.; Merola, J.; Miller, J. S.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. J. Nat. Prod. 2005, 68, 1371.
(c) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.
(d) Lin, Y.-M.; Lu, G.-P.; Wang, R.-K.; Yi, W.-B. Org. Lett. 2016, 18, 6424.
[54] Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.; Ge, H.; Niu, B.; Ding, Y. RSC Adv. 2015, 5, 59861.
[55] Ding, Y.; Zhao, W.; Li, Y.; Xie, P.; Wu, W.; Zhou, A.; Huang, Y.; Liu, Y. Org. Biomol. Chem. 2016, 14, 1428.
[56] Guo, T. Synth. Commun. 2017, 47, 2053.
[57] Zhao, W.; Xie, P.; Bian, Z.; Zhou, A.-H.; Ge, H.-B.; Zhang, M.; Ding, Y.; Zheng, L. J. Org. Chem. 2015, 80, 9167.
[58] Liu, W.-J.; Wang, S.-H.; Cai, Z.-H.; Li, Z.-Y.; Liu, J.-W.; Wang, A.-D. Synlett 2018, 29, 116.
[59] Wan, J.-P.; Zhong, S.; Xie, L.; Cao, X.; Liu, Y.; Wei, L. Org. Lett. 2016, 18, 584.
[60] Bai, F.-C.; Zhang, S.; Wei, L.; Liu, Y.-Y. Asian J. Org. Chem. 2018, 7, 371.
[61] Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084.
[62] Xiao, F.-H.; Wang, D.; Yuan, S.; Huang, H.; Deng, G.-J. RSC Adv. 2018, 8, 23319.
[63] Fu, H.; Zhao, B.-T.; Zhu, W.-M. Tetrahedron Letters 2019, 60, 124.
[64] Yang, F.-L.; Gui, Y.; Yu, B.-K.; Jin, Y.-X.; Tian, S.-K. Adv. Synth. Catal. 2016, 358, 3368.
[65] (a) Bao, Y.; Yang, X.-Q.; Zhou, Q.-F.; Yang, F. L.; Org. Lett. 2018, 20, 1966.
(b) Bao, Y.; Zhong, L.-Y.; Hou, Q.; Zhou, Q.-F.; Yang, F.-L. Chin. J. Chem. 2018, 36, 1063.
[66] Deng, L.-L.; Liu, Y.-Y. ACS Omega 2018, 3, 11890.
[67] Guo, T.; Wei, X.-N. Synlett 2017, 28, 2499.
[68] Yang, Z.; Yan, Y.; Li, A.; Liao, J.; Zhang, L.; Yang, T.; Zhou, C. New J. Chem. 2018, 42, 14738.
[69] Dong, Y.-T.; Jin, Q.; Zhou, L.; Chen, J. Org. Lett. 2016, 18, 5708.
[70] Bu, M.; Lu, G.; Cai, C. Org. Chem. Front. 2017, 4, 266.
[71] Li, G.; Zhang, G.; Deng, X.; Qu, K.; Wang, H.; Wei, W.; Yang, D. Org. Biomol. Chem. 2018, 16, 8015.

文章导航

/