研究论文

C-乙烯基鼠李糖苷衍生物的合成及细胞毒活性探究

  • 吉玉 ,
  • 姚辉 ,
  • 柳乂 ,
  • 黄年玉 ,
  • 刘明国
展开
  • 三峡大学生物与制药学院 天然产物研究与利用湖北省重点实验室 湖北宜昌 443002

收稿日期: 2020-03-14

  修回日期: 2020-04-19

  网络出版日期: 2020-04-23

基金资助

国家自然科学基金(No.21602123)及三峡大学青年拔尖人才项目和研究生创新基金(No.SDYC2016121)资助项目.

Synthesis and Cytotoxic Activity of C-Vinyl-rhamnopyranoside Derivatives

  • Ji Yu ,
  • Yao Hui ,
  • Liu Yi ,
  • Huang Nianyu ,
  • Liu Mingguo
Expand
  • Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002

Received date: 2020-03-14

  Revised date: 2020-04-19

  Online published: 2020-04-23

Supported by

Project supported by the National Natural Science Foundation of China (No. 21602123), and the Youth Talent Development Foundation and Scientific Foundation from Graduate School of China Three Gorges University (No. SDYC2016121).

摘要

报道了L-鼠李烯糖与炔丙酯在Au(I)催化下通过分子间串联的1,3-酰氧基迁移/Ferrier重排策略,合成了C-乙烯基鼠李糖苷衍生物.通过同位素O18标记实验验证了C-糖基化机理.产物的绝对构型经X射线单晶衍射分析确定.利用噻唑蓝(MTT)法研究了产物的细胞毒活性,结果显示产物3i对人体胃癌细胞HGC-27具有良好的抑制作用,IC50值为18.29 μmol·L-1.该方法具有操作简单、高非对映选择性、反应条件温和等优点.

本文引用格式

吉玉 , 姚辉 , 柳乂 , 黄年玉 , 刘明国 . C-乙烯基鼠李糖苷衍生物的合成及细胞毒活性探究[J]. 有机化学, 2020 , 40(7) : 2051 -2061 . DOI: 10.6023/cjoc202003037

Abstract

A novel gold(I)-catalyzed glycosylation method was described to synthesize C-vinyl-rhamnopyranoside derivatives using stable propargylic carboxylates and 3,4-di-O-acetyl-L-rhamnal as starting materials, based on the tandem intermolecular 1,3-acyloxy migration/Ferrier rearrangement. The C-glycosylation process has been verified by O18 isotopic labeling experiment, and the absolute configuration of synthesized products was determined by X-ray single crystal diffraction. The cytotoxic activity was investigated by methyl thiazolyl tetrazolium (MTT). It indicates that product 3i has strong inhibitory effect on human gastric cancer cells HGC-27 with IC50 18.29 μmol·L-1. The described synthetic method was outstanding with easy-to-operate, high diastereoselectivity, and mild reaction condition.

参考文献

[1] (a) Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9, 3077.
(b) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 13696.
(c) Štambaský, J.; Hocek, M.; Kocovský, P. Chem. Rev. 2009, 109, 6729.
(d) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
(e) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.
(f) Norsikian, S.; Tresse, C.; François-Eude, M.; Jeanne-Julien, L.; Masson, G.; Servajean, V.; Genta-Jouve, G.; Beau, J. M.; Roull, E. Angew. Chem., Int. Ed. 2020, 59, 6612.
(g) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
[2] (a) Hassanzadeh, A.; Gorry, P. A.; Morris, G. A.; Barber, J. J. Med. Chem. 2006, 49, 6334.
(b) Kim, B. G.; Kim, H. J.; Ahn, J. H. J. Agric. Food. Chem. 2012, 60, 11143.
(c) Bhattarai, B.; Nagorny, P. Org. Lett. 2018, 20, 154.
(d) Chauvin, A.; Nepogodiev, S.; Field, R. J. Org. Chem. 2005, 70, 960.
(e) Urabe, D.; Nakagawa, Y.; Mukai, K.; Fukushima, K.; Aoki, N.; Itoh, H.; Nagatomo, M.; Inoue, M. J. Org. Chem. 2018, 83, 13888.
(f) Lee, H. S.; Kim, M. J. J. Agric. Food. Chem. 2002, 50, 1840.
(g) Khatri, H. R.; Bhattarai, B.; Kaplan, W.; Li, Z.; Long, M. J. C.; Aye, Y.; Nagorny, P. J. Am. Chem. Soc. 2019, 141, 4849.
(h) Crich, D.; Li, H. J. Org. Chem. 2002, 67, 4640.
(i) Ashraf Shalaby, M.; Fronczek, F. R.; Younathan, E. S. Carbohydr. Res. 1994, 258, 267
[3] (a) Chen, C. L.; Sparks, S. M.; Martin, S. F. J. Am. Chem. Soc. 2006, 128, 13696.
(b) Tius, M. A.; Gu, X.; Gomez-Galeno, J. J. Am. Chem. Soc. 1990, 112, 8188.
(c) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.
[4] (a) Cai, X.; Ng, K.; Panesar, H.; Moon, S. J.; Paredes, M.; Ishida, K.; Hertweck, C.; Minehan, T. G. Org. Lett. 2014, 16, 2962.
(b) Liao, H. Z; Ma, J.; Yao, H.; Liu, X. W. Org. Biomol. Chem. 2018, 16, 1791.
[5] Szeja, W.; Grynkiewicz, G.; Bieg, T.; Swierk, P.; Byczek, A.; Papaj, K.; Kitel, R.; Rusin, A. Molecules 2014, 19, 7072.
[6] (a) Gong, H.; Sinisi, R.; Gagne, M. R. J. Am. Chem. Soc. 2007, 129, 1908.
(b) Gong, H.; Gagne, M. R. J. Am. Chem. Soc. 2008, 130, 12177.
(c) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.
(d) Nicolas, L.; Angibaud, P.; Stansfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. 2012, 51, 11101.
(e) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.
(f) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc. 2014, 136, 17645.
(g) Zhu, F.; Rourke, M. J.; Yang, T.; Rodriguez, J.; Walczak, M. A. J. Am. Chem. Soc. 2016, 138, 1204.
(h) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K. M.; Nakamura, M. J. Am. Chem. Soc. 2017, 139, 10693.
[7] (a) Koppolu, S. R.; Niddana, R.; Balamurugan, R. Org. Biomol. Chem. 2015, 13, 5094.
(b) Wang, Y.; Liu, M.; Liu, L.; Xia, J. H.; Du, Y. G.; Sun, J. S. J. Org. Chem. 2018, 83, 4111.
[8] (a) Bolitt, V.; Mioskowski, C.; Kollah, R. O.; Manna, S.; Rajapaksa, D.; Falck, J. R. J. Am. Chem. Soc. 1991, 113, 6320.
(b) Fuganti, C.; Serra, S. Synlett 1999, 1999, 1241.
(c) Kulkarni, S. S.; Gervay-Hague, J. Org. Lett. 2006, 8, 5765.
(d) Kaliappan, K. P.; Subrahmanyam, A. V. Org. Lett. 2007, 9, 1121.
(e) Snajdr, I.; Parkan, K.; Hessler, F.; Kotora, M. Beilstein J. Org. Chem. 2015, 11, 1392.
[9] (a) Li, X.; Chen, G.; Garcia-Navarro, R.; Franck, R. W.; Tsuji, M. Immunology 2009, 127, 216.
(b) Yao, Y.; Xiong, C. P.; Zhong, y. L.; Bian, G. W.; Huang, N. Y.; Wang, L.; Zou, K. Adv. Synth. Catal. 2019, 5 1012.
[10] Bai, Y.; Leow, M.; Zeng, J.; Liu, X.-W. Org. Lett. 2011, 13, 5648.
[11] Tatina, M.; Kusunuru, A. K.; Yousuf, S. K.; Mukherjee, D. Chem. Commun. 2013, 49, 11409.
[12] (a) Sharma, B. M.; Rathod, J.; Gonnade, R. G.; Kumar, P. J. Org. Chem. 2018, 83, 9353.
(b) Ruengsangtongkul, S.; Chaisan, N.; Thongsornkleeb, C.; Tummatorn, J. Org. Lett. 2019, 21, 2514.
[13] Veryser, C.; Steurs, G.; Meervelt, L. V.; Borggraeve, W. M. Adv. Synth. Catal. 2017, 359, 1271.
[14] Xiao, Q.; Zheng, F.; Tang, Q.; Wu, J. J.; Xie, J.; Huang, H. D.; Yang, X. B.; Hann, S. S. Cell Physiol. Biochem. 2018, 49, 1615.
[15] (a) Xu, Y.; Wang, W. J.; Cai, Y.; Yang, X.; Wang, P. G.; Zhao, W. RSC Adv. 2014, 4, 46662.
(b) Gagarinov, I. A.; Fang, T.; Liu, L.; Srivastava, A. D.; Boons, G. J. Org. Lett. 2015, 17, 928.
(c) Suzuki, K.; Sulikowski, G. A.; Friesen, R. W.; Danishefsk, S. J. J. Am. Chem. Soc. 1990, 112, 8895.
(d) Wang, J.; Deng, C.; Zhang, Q.; Chai, Y. Org. Lett. 2019, 21, 1103.
[16] (a) Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem., Int. Ed. 2015, 54, 12134.
(b) Reddy, V.; Vijaya, A. R. Org. Lett. 2015, 17, 3390.
(c) Chu, W. D.; Zhang, L. F.; Bao, X.; Zhao, X. H.; Zeng, C.; Du, J. Y.; Zhang, G. B.; Wang, F. X.; Ma, X. Y.; Fan, C. A. Angew. Chem., Int. Ed. 2013, 52, 9229.
(d) Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2014, 16, 1176.
文章导航

/