综述与进展

负载型功能离子液体在有机合成中的应用研究进展

  • 李胜男 ,
  • 赵雯辛 ,
  • 刘玉静 ,
  • 刘中秋 ,
  • 应安国
展开
  • a 曲阜师范大学化学与化工学院 山东曲阜 273100;
    b 台州学院医药化工学院 浙江台州 318000

收稿日期: 2020-03-05

  修回日期: 2020-04-09

  网络出版日期: 2020-04-30

基金资助

国家自然科学基金(Nos.21978154,21576176)和国家级大学生创新创业训练计划(No.201910446018)资助项目.

Research Progress in the Application of Supported Functional Ionic Liquids in Organic Transformations

  • Li Shengnan ,
  • Zhao Wenxin ,
  • Liu Yujing ,
  • Liu Zhongqiu ,
  • Ying Anguo
Expand
  • a Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273100;
    b School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000

Received date: 2020-03-05

  Revised date: 2020-04-09

  Online published: 2020-04-30

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21978154, 21576176) and the National Students' Platform for Innovation and Entrepreneurship Training Programs (No. 201910446018).

摘要

离子液体(ionic liquids,ILs)凭借其优良的物理化学特性以及对环境友好的特性,得到广泛应用,但ILs的高粘度性导致反应后分离困难、可循环利用性低等问题.而负载型功能离子液体(supported functional ionic liquids,SFILs)作为离子液体和多种材料的结合体,有着ILs和负载材料的双重优点,可回收性能高、绿色经济高效,在催化领域有着广泛的应用.主要对近几年几种不同类型的SFILs的制备、反应机理分析及其对反应的影响等研究成果进行了综述,包括负载磁性纳米颗粒的ILs、负载石墨烯、分子筛和有机-金属骨架等类型的ILs.

本文引用格式

李胜男 , 赵雯辛 , 刘玉静 , 刘中秋 , 应安国 . 负载型功能离子液体在有机合成中的应用研究进展[J]. 有机化学, 2020 , 40(7) : 1835 -1846 . DOI: 10.6023/cjoc202003010

Abstract

Ionic liquids (ILs) have been widely used because of their excellent physical and chemical properties, and environment-friendly properties. However, the high viscosity of ILs causes difficulties in post-reaction separation and low recyclability. As the combination of ionic liquids with a variety of solid materials, supported functional ILs (SFILs) have the coupled advantages of ILs and loaded materials. It has a wide range of applications in the field of catalysis because of its high recovery performance, green economy and high efficiency. This paper mainly reviews the recent achievements over SFILs in respects of the preparation of ILs supported on various carriers like magnetic nanoparticles, graphene oxide, molecular sieves, organic-metal skeleton etc., the applications as the heterogeneous catalysts to organic transformations, and the understanding of the catalytic mechanism.

参考文献

[1] Wasserschied, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772.
[2] Watanabe, M.; Morgan, L. T.; Zhang, S.-G.; Ueno K.; Yasuda T.; Dokko, K. Chem. Rev. 2017, 117, 7190.
[3] Zeng, S.-J.; Zhang, X.-P.; Bai, L.; Zhang, X.-C.; Wang, H.; Wang, J.-J.; Bao, D.; Li, M.-D.; Liu, X.-Y.; Zhang, S.-J. Chem. Rev. 2017, 117, 9625.
[4] Zhou, Y.; Qu, J. ACS Appl. Mater. Inter. 2017, 9, 3029.
[5] Abhijeet, P.; Bapat.; Robert, E.; Bryan, T.; Seymour.; Zhao, B.; Cosimbescu, L. Eur. Polym. J. 2018, 108, 38.
[6] Karimi, B.; Vahdati, S.; Vali, H. RSC Adv. 2016, 6, 63717.
[7] Karimi, B.; Khorasani, M.; Naderi, Z.; Mirzaei, H. M.; Vali, H. ChemCatChem 2016, 8, 906.
[8] García, J, I.; Herrerías, C. I.; López-Sánchez, B.; Mayoral, J.A.; Miñana, A. C. Tetrahedron:Asymmetry 2014, 25, 833.
[9] Giacalone, F.; Gruttadauria, M. ChemCatChem 2016, 8, 664.
[10] Mehnert, C. P. Chem. Eur. J. 2005, 11, 50.
[11] Van, D. C.; Wahlen, J.; Mertens, P.; Binnemans, K.; Vos, D. D. Dalton Trans. 2010, 39, 8377.
[12] Giacalone, F.; Gruttadauria, M. ChemCatChem 2016, 8, 664.
[13] Xu, J.; Xu, M.; Wu, J.; Wu, H.; Zhang, W.-H.; Li, Y.-X. RSC Adv. 2015, 5, 72361.
[14] Xu, B.-H.; Wang, J.-Q.; Sun, J.; Huang, Y.; Zhang, J.-P.; Zhang, X.-P.; Zhang, S.-J. Green Chem. 2015, 17, 108.
[15] Mehnert, C. P. Chem. Eur. J. 2005, 11, 50.
[16] Zheng, X.-X.; Luo, S.-Z.; Zhang, L.; Cheng, J.-P. Green Chem. 2009, 11, 455.
[17] Karimi, B.; Mansouriand, F.; Vali, H. Green Chem. 2014, 16, 2587.
[18] Yang, J.-B.; Zhou, L.-H.; Guo, X.-T.; Li, L.; Zhang, P.; Hong, R.-Y.; Qiu, T. Chem. Eng. J. 2015, 280, 147.
[19] Wang, B.; Zhang, J.; Zou, X.; Dong, H.; Yao, P. Chem. Eng. J. 2015, 260, 172.
[20] Severa, G.; Bethune, K.; Rocheleau, R.; Higgins, S. Chem. Eng. J. 2015, 26, 249.
[21] Askalany, A. A.; Freni, A.; Santori, G. Desalination 2019, 452, 258.
[22] Jebur, M.; Sengupta, A.; Chiao, Y. H.; Kamaz, M.; Qian, X.-H.; Wickramasinghe, R. J. Membr. Sci. 2018, 556, 1.
[23] Zhu, J.-M.; He, B.-T.; Huang, J.-H.; Li, C.-C.; Ren, T. Microporous Mesoporous Mater. 2018, 260, 190.
[24] Uehara, Y.; Karami, D.; Mahinpey, N. Energy Fuels 2018, 32, 5345.
[25] Mendes, T. C.; Zhang, X-M.; Wu, Y-T.; Howlett, P. C.; Forsyth, M.; Macfarlan, D. R. ACS Sustainable Chem. Eng. 2019, 7, 3722.
[26] Mehnert, C. P.; Mozeleski, E. J.; Cook, R. A. Chem. Commun. 2002, 3010.
[27] Lee, C.; Sandig, B.; Buchmeiser, M. R.; Haumann, M. Catal. Sci. Technol. 2018, 8, 2460.
[28] Oriol, M. F.; Chacón, G.; Bernardi, F.; Grehl, T.; Brüner, P.; Dupont, J. Catal. Sci. Technol. 2018, 8, 3081.
[29] Ying, A.-G.; Hou, H.-L.; Liu, S.; Chen, G.; Yang, J.-G.; Xu, S.-L. ACS Sustainable Chem. Eng. 2016, 4, 625.
[30] Ying, A.-G.; Liu, S.; Li, Z.-F.; Chen, G.; Yang, J.-G.; Yan, H.; Xu, S.-L. Adv. Synth. Catal. 2016, 358, 2116.
[31] Li, Z.-F.; Hu, H.-N.; Jin, Y.-X.; Li, R.-R.; Ying, A.-G.; Xu, S.-L. Curr. Org. Synth. 2015, 12, 467.
[32] Ying, A.-G.; Liu, S.; Ni, Y.-X.; Qiu, F.-L.; Xu, S.-L.; Tang, W.-Y. Catal. Sci. Technol. 2014, 4, 2115.
[33] Abolfazl, A.; Samiei, M.; Davaran, S. Nanoscale Res. Lett. 2012, 7, 144.
[34] Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Chem. Rev. 2011, 111, 3036.
[35] Gawande, M. B.; Branco, P. S.; Varma, R. S. Chem. Soc. Rev. 2013, 42, 3371.
[36] Baig, R. N.; Varma, R. S. Green Chem. 2013, 15, 398.
[37] Sadeghzadeh, S. M.; Daneshfar, F.; Malekzadeh, M. Chin. J. Chem. 2014, 32, 349.
[38] Lee, J.; Chung, J.; Byun, S. M.; Kim, B. M.; Lee, C. Tetrahedron 2013, 69, 5660.
[39] Hu, H.; Liu, S.; Lin, W. RSC Adv. 2012, 2, 2576.
[40] Estakhri, E. Nasr-Esfahani, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V. Appl. Organomet. Chem. 2017, 31, 3799.
[41] Teimuri-Mofrad, R.; Esmati, S.; Rabiei, M.; Gholamhosseini-Nazari, M. Heterocycl. Commun. 2017, 23, 439.
[42] Zohreh, N.; Tavakolizadeh, M.; Hosseini, S. H.; Pourjavadi, A.; Bennett, C. Polymer 2017, 112, 342.
[43] Eigler, S.; Hirsch, A. Angew. Chem., Int. Ed. 2014, 53, 7720.
[44] Gómez-Navarro, C.; Burghard, M.; Kern, K. Nano Lett. 2008, 8, 2045.
[45] Saptal, V. B.; Sasaki, T.; Harada, K.; Nishio-Hamane, D.; Bhanage, B. M. ChemSusChem 2016, 9, 644.
[46] Shaygan, N. A.; Rana, S.; Dohler, D.; Jirsa, F.; Meister, A.; Guadagno, L.; Koslowski, E.; Bron, M.; Binder, W, H. Chem.-Eur. J. 2015, 21, 10763.
[47] Li, Z.; Zhang, W.; Zhao, Q.; Gu, H.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. ACS Sustainable Chem. E
[48] Gaikwad, V. V.; Vitthal, B.; Saptal.; Harada, K.; Sasaki, T.; Daisuke, N. H.; Bhalchandra, M. B. ChemNanoMat 2015, 1, 489.
[49] Xue, B.; Liang, X.-Y.; Liu, N.; Xu, T.-C.; Xu, J.; Li, Y.-X. Colloids Surf., A 2018, 538, 534.
[50] Sadjadi, S.; Heravi, M.; Raja, M. Int. J. Biol. Macromol. 2019, 122, 228.
[51] Zhu, J.; Wang, S.-Q.; Gu, Y.-K.; Xue, B.; Li, Y.-X. Mater. Chem. Phys. 2018, 208, 68.
[52] Dai, W.-L.; Chen, L.; Yin, S.-F.; Luo, S.-L.; Au, C.-T. Catal. Lett. 2010, 135.
[53] Cheng, W.-G.; Chen, X.; Sun, J.; Wang, J.-Q.; Zhang, S.-J. Catal. Today 2013, 117.
[54] Adam, F.; Appaturi, J. N.; Ng, E. J. Mol. Catal. A, Chem. 2014, 386, 42.
[55] Yuan, C.; Huang, Z.; Chen, J. Catal. Commun. 2012, 24, 56.
[56] Hu, Y.; Tang, S.; Jiang, L.; Zou, B.; Yang, J.; Huang, H. Proc. Biochem. 2012, 47, 2291.
[57] Setyawan, H.; Balgis, R. Asia-Pac. J. Chem. Eng. 2012, 7, 448.
[58] Yang, J-B.; Zeng, T.; Cai, D-R.; Li, L.; Tang, W-L.; Hong, R-Y.; Qiu, T. Asia-Pac. J. Chem. Eng. 2016, 11, 901.
[59] Guo, L.-Y.; Deng, L.-L.; Jin, X.-C.; Wu, H.; Yin, L-Z. Catal. Lett. 2017, 147, 2290.
[60] Wang, Y.-Q.; Zhao, D.; Wang, L.-L.; Wang, X.-Q.; Li, L.-J.; Xing, Z.-P.; Ji, N.; Liu, S.-J.; Ding, H. Fuel 2018, 216, 364.
[61] Hierro, I.; Pérez, Y.; Fajardo, M. M. Mesoporous Mater. 2018, 263, 173.
[62] Alcañiz, J J.; Gascon J.; Kapteijn, F. J. Mater. Chem. 2012, 22, 10102.
[63] Dhakshinamoorthy, A.; Opanasenko, M.; Čejka, J.; Garcia, H. Catal. Sci. Technol. 2013, 3, 2509.
[64] Tanabe, K. K.; Cohen, S. M. Inorg. Chem. 2010, 49, 6766.
[65] Valenzano, L.; Civalleri, B.; Chavan, S.; Palomino, G. T.; Areán, C. O.; Bordiga. S. J. Phys. Chem. C 2010, 114, 11185.
[66] Gao, W.-Y.; Chen, Y.; Niu, Y.; Williams, K.; Cash, L.; Perez P. J.; Wojtas, L.; Cai, J.; Chen, Y-S.; Ma, S. Angew. Chem. 2014, 126, 2653.
[67] Liang, J.; Xie, Y.-Q.; Wang, X.-S.; Wang, Q.; Liu, T.-T.; Huang, Y.-B.; Cao, R. Chem. Commun. 2018, 54, 342.
[68] Shaabani, A.; Mohammadian, R.; Farhid, F.; Alavijeh, M. K.; Amini, M. M. Ind. Eng. Chem. Res. 2019, 58, 2784.
[69] Chong, S.-Y.; Wang, T.-T.; Cheng, L.-C.; Lv, H.-Y.; Ji, M. Langmuir 2019, 35, 495.
[70] Liu, Y.-Z.; Ma, Y.-H.; Zhao, Y.-B.; Sun, X.-X.; Gándara, F.; Furukawa, H.; Liu, Z.; Zhu, H.-Y.; Zhu, C.-H.; Suenaga, K.; Oleynikov, P.; Alshammari,A. S.; Zhang, X.; Terasaki, O.; Yaghi, O. M. Science 2016, 351, 365.
[71] Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[72] Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[73] Dogru, M.; Bein, T. Chem. Commun. 2014, 50, 5531.
[74] Liu, X.-H.; Guan, C.-Z.; Wang, D.; Wan, L.-J. Adv. Mater. 2014, 26, 6912.
[75] Sun, L.; Boo, W. J.; Sue, H.-J.; Clearfield, A. New J. Chem. 2007, 31, 39.
[76] Sun, L.-Y.; O'Reilly, J. Y.; Kong, D.-Y.; Su, J.-Y.; Boo, W. J.; Sue, H-J.; Clearfield, A. J. Colloid Interface Sci. 2009, 333, 503.
[77] Tang, M.; Yang T.-S.; Zhang, Y. Sci. China, Technol. Sci. 2016, 59, 436.
[78] Wei, S.-Y.; Lizu, M.; Zhang, X.; Sampathi, J.; Sun, L.-Y.; Milner, M. F. High Perform. Polym. 2013, 25, 25.
[79] Zhou, Y.; Huang, R.; Ding, F.; Brittain, A. D.; Liu, J.; Zhang, M.; Xiao, M.; Meng, Y.; Sun, L. ACS Appl. Mater. Interfaces 2014, 6, 7417.
[80] Zhou, Y.; Wang, A.; Wang, Z.; Chen, M.; Wang, W.; Sun, L.; Liu, X. RSC Adv. 2015, 5, 93969.
[81] Zhou, Y.; Liu, J.; Xiao, M.; Meng, Y.; Sun, L. ACS Appl. Mater. Interfaces 2016, 8, 5547.
[82] He, X.; Xiao, H.; Choi, H.; Díaz, A.; Mosby, B.; Clearfield, A.; Liang, H. Colloids Surf. A 2014, 452, 32.
[83] Gower, L. B. Chem. Rev. 2008, 108, 4551.
[84] Dash, M.; Chiellini, F.; Ottenbrite, R. M.; Chiellini, E. Prog. Polym. Sci. 2011, 36, 981.
[85] Ifuku, S.; Miwa, T.; Morimoto, M.; Saimotoa, H. Green Chem. 2011, 13, 1499.
[86] Chung, K.-H.; Cho, M. Y.; Sung, M.-H.; Poo, H.; Lim, Y. T. Chem. Commun. 2011, 47, 8889.
[87] Dong, B.; Wang, L-Y.; Zhao, S.; Ge, R-L.; Song, X.-D.; Wang, Y.; Gao, Y.-A. Chem. Commun. 2016, 52, 7082.
[88] Zhou, Y.-J.; Liu, J.-J.; Huang, R.-C.; Zhang, M.; Xiao, M.; Meng, Y.-Z.; Sun, L.-Y. Dalton Trans. 2017, 46, 13126.
[89] Sun, J.; Wang, J.-Q.; Cheng, W.-G.; Zhang, J.-X.; Li, X.-H.; Zhang, S.-J.; She, Y.-B. Green Chem. 2012, 14, 654.
[90] Nassor, E.; Mambrini, R. V.; Santos, E.; Moura, F.; Araujo, M. H. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2288.
[91] Zhang, M.-J.; Tang, Z.-Y.; Fu, W.-Q.; Wang, W.-Y.; Tan, R.; Yin, D.-H. Chem. Commun. 2019, 55, 592.
文章导航

/