研究专题

三氟甲氧基化反应研究进展

  • 王丰 ,
  • 汤平平
展开
  • 南开大学化学学院 元素有机化学国家重点实验室 天津 300071

收稿日期: 2020-03-20

  修回日期: 2020-04-24

  网络出版日期: 2020-04-30

基金资助

国家重点研发计划(No.2016YFA0602900)、国家自然科学基金(Nos.21672110,21925105)及天津市自然科学基金(No.18JCJQJC47000)资助项目.

Recent Advances in Trifluoromethoxylation Reactions

  • Wang Feng ,
  • Tang Pingping
Expand
  • State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071

Received date: 2020-03-20

  Revised date: 2020-04-24

  Online published: 2020-04-30

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFA0602900), the National Natural Science Foundation of China (Nos. 21672110, 21925105) and the Natural Science Foundation of Tianjin City (No. 18JCJQJC47000).

摘要

近年来,有机氟化学领域迅猛发展,氟化及含氟官能团化反应受到有机化学家的高度关注.含氟官能团具有特殊的理化性质,将其引入药物分子会提高药物分子的生物活性.其中三氟甲氧基具有较强的吸电子性和高亲脂性,含有三氟甲氧基的化合物在医药和农药等领域发挥着重要的作用.近年,一些富有创新性的策略被用于合成含有三氟甲氧基的化合物.重点论述了我们研究小组在三氟甲氧基化反应领域的研究成果,并讨论了三氟甲氧基化反应所面临的一些挑战.

本文引用格式

王丰 , 汤平平 . 三氟甲氧基化反应研究进展[J]. 有机化学, 2020 , 40(7) : 1805 -1813 . DOI: 10.6023/cjoc202003048

Abstract

In recent years, the field of organic fluorine chemistry has developed rapidly. Fluorination and fluorine-containing functionalization reactions have attracted extensive attention of organic chemists due to their special physical and chemical properties. The introduction of fluorine-containing group into drug molecules can improve the biological activity of drug molecules. Trifluoromethoxy group has strong electron absorption and high lipophilicity, compounds containing trifluoromethoxy play an important role in the fields of medicine, pesticides and materials. In recent years, some innovative strategies have been used to synthesize compounds containing trifluoromethoxy group. This account mainly focuses on the research of trifluoromethoxy reaction in our group, and some challenges faced by trifluoromethoxy reaction.

参考文献

[1] (a) Becker A. Inventory of Industrial Fluoro-biochemicals, Eyrolles, Paris, 1996.
(b) Smart, B. E. J. Fluorine Chem. 2001, 109, 3.
(c) Dunitz, J. D. ChemBioChem 2004, 5, 614.
(d) Dolbier, W. R. J. Fluorine Chem. 2005, 126, 157.
(e) Hird, M. Chem. Soc. Rev. 2007, 36, 2070.
(f) Pagliaro, M.; Ciriminna R. J. Mater. Chem. 2005, 15, 4981.
(g) Wang, J.; Snchez-Rosell, M.; AceÇa, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(h) Jeschke, P. ChemBioChem 2004, 5, 570.
[2] (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(b) Mller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[3] Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.
[4] Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
[5] (a) Kapustin, E. G.; Bzhezovsky, V. M.; Yagupolskii, L. M. J. Fluorine Chem. 2002, 113, 227.
(b) Klocker, J.; Karpfen, A.; Wolschann, P. Chem. Phys. Lett. 2003, 367, 566.
(c) Manteau, B.; Genix, P.; Brelot, L.; Vors, J. P.; Pazenok, S.; Giornal, F.; Leuenberger, C.; Leroux, F. R. Eur. J. Org. Chem. 2010, 6043.
[6] Moujalled, D.; White, A. R. CNS Drugs 2016, 30, 227.
[7] (a) Yagupol'skii, L. M. Dokl. Akad. Nauk SSSR 1955, 105, 100.
(b) Yarovenko, N. N.; Vasileva, A. S. Zh. Obshch. Khim. 1958, 28, 2502.
(c) Yagupol'skii, L. M.; Troitskaya, V. I. J. Gen. Chem. USSR 1961, 31, 845.
(d) Yagupol'skii, L. M.; Orda, V. V. Zh. Obshch. Khim. 1964, 34, 1979.
(e) Manteau, B.; Genix, P.; Brelot, L.; Vors, J. P.; Pazenok, S.; Giornal, F.; Leuenberger, C.; Leroux, F. R. Eur. J. Org. Chem. 2010, 6043.
(f) Sheppard, W. A. J. Org. Chem. 1964, 29, 1.
(g) Kuroboshi, M.; Suzuki, K.; Hiyama, T. Tetrahedron Lett. 1992, 33, 4173.
(h) Kanie, K.; Tanaka, Y.; Suzuki, K.; Kuroboshi, M.; Hiyama, T. Bull. Chem. Soc. Jpn. 2000, 73, 471.
(i) Kuroboshi, M.; Hiyama, T. Adv. Synth. Catal. 2001, 343, 235.
[8] For recent reviews on trifluoromethoxylation reactions, see:(a) Besset, T.; Jubault, P.; Pannecouke, X.; Poisson, T. Org. Chem. Front. 2016, 3, 1004.
(b) Tlili, A.; Toulgoat, F.; Billard, T. Angew. Chem., Int. Ed. 2016, 57, 11726.
(c) Lee, K. N.; Lee, J. W.; Ngai, M. Y. Tetrahedron 2018, 74, 7127.
(d) Lee, J. W.; Lee, K. N.; Ngai, M. Y. Angew. Chem., Int. Ed. 2019, 58, 11171.
(e) Hardy, M. A.; Chachignon, H.; Cahard, D. Asian J. Org. Chem. 2019, 8, 591.
(f) Zhang, X. F.; Tang, P. P. Sci. China: Chem. 2019, 62, 525.
(g) Jiang, X. H.; Tang, P. P. Chin. J. Chem. 2020, 38, 101.
[9] (a) Umemoto, T.; Adachi, K.; Ishihara, S. J. Org. Chem. 2007, 72, 6905.
(b) Stanek, K.; Koller, R.; Togni, A. J. Org. Chem. 2008, 73, 7678.
(c) Liang, A.; Han, S.; Liu, Z.; Wang, L.; Li, J.; Zou, D.; Wu, Y. Chem.-Eur. J. 2016, 22, 5102.
(d) Koller, R.; Huchet, Q.; Battaglia, P.; Welch, J. M.; Togni, A. Chem. Commun. 2009, 5993.
(e) Santschi, N.; Geissbhler, P.; Togni, A. J. Fluorine Chem. 2012, 135, 83.
(f) Matousek, V.; Pietrasiak, E.; Sigrist, L.; Czarniecki, B.; Togni, A. Eur. J. Org. Chem. 2014, 3087.
(g) Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M. Y. Angew. Chem., Int. Ed. 2014, 53, 14559.
(h) Chu, L.; Qing, F. L. Acc. Chem. Res. 2014, 47, 1513.
(i) Liu, J. B.; Chen, C.; Chu, L.; Chen, Z. H.; Xu, X. H.; Qing, F. L. Angew. Chem., Int. Ed. 2015, 54, 11839. (j) Liu, J. B.; Xu, X. H.; Qing, F. L. Org. Lett. 2015, 17, 5048.
(k) Naumann, D.; Kischkewitz, J. J. Fluorine Chem. 1990, 46, 265.
(l) Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M. Y. Angew. Chem., Int. Ed. 2014, 53, 14559.
(m) Lee, K. N.; Lee, J. W.; Ngai, M. Y. Synlett 2016, 27, 313.
[10] Kellogg, K. B.; Cady, G. H. J. Am. Chem. Soc. 1948, 70, 3986.
[11] Venturini, F.; Navarrini, W.; Famulari, A.; Sansotera, M.; Dardani, P.; Tortelli, V. J. Fluorine Chem. 2012, 140, 43.
[12] (a) Zheng, W. J.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2018, 57, 9645.
(b) Zheng, W. J.; Lee, J. W.; Morales-Rivera, C. A.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2018, 57, 13795.
[13] Jelier, B. J.; Tripet, P. F.; Pietrasiak, E.; Franzoni, I.; Jeschke, G.; Togni, A. Angew. Chem., Int. Ed. 2018, 57, 13784.
[14] (a) Noftle, R. E.; Cady, G. H. Inorg. Chem, 1965, 4, 1010.
(b) Katsuhara, Y.; DesMarteau, D. D. J. Am. Chem. Soc. 1980, 102, 2681.
[15] (a) Kolomeitsev, A. A.; Vorobyev, M.; Gillandt, H. Tetrahedron Lett. 2008, 49, 449.
(b) Ignatyev, N.; Hierse, W.; Seidel, M.; Bathe, A.; Schroeter, J.; Koppe, K.; Meier, T.; Barthen, P.; Frank, W. DE 102008024221, 2009.
(c) Ignatyev, N.; Hierse, W.; Seidel, M.; Bathe, M.; Schroeter, J.; Koppe, K.; Meier, T.; Barthen, P.; Frank, W. WO 2009141053, 2009.
(d) Marrec, O.; Billard, T.; Vors, J. P.; Pazenok, S.; Langlois, B. R. J. Fluorine Chem. 2010, 131, 200.
(e) Sokolenko, T. M.; Davydova, Y. A.; Yagupol'skii, Y. L. J. Fluorine Chem. 2012, 136, 20.
[16] (a) Barbion, J.; Pazenok, S.; Vors, J. P.; Langlois, B. R.; Billard, T. Org. Process Res. Dev. 2014, 18, 1037.
(b) Chen, C. H.; Chen, P. H.; Liu, G. S. J. Am. Chem. Soc. 2015, 137, 15648.
(c) Chen, C. H.; Luo, Y. X.; Fu, L.; Chen, P. H.; Lan, Y.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 1207.
(d) Chen, S.; Huang, Y.; Fang, X.; Li, H.; Zhang, Z.; Hor, T. S. A.; Weng, Z. Dalton Trans. 2015, 44, 19682.
(e) Zha, G. F.; Han, J. B.; Hu, X. Q.; Qin, H. L.; Fang, W. Y.; Zhang, C. P. Chem. Commun. 2016, 52, 7458.
(f) Chen, D.; Lu, L.; Shen, Q. L. Org. Chem. Front. 2019, 6, 1801.
(g) Yang, Y.; Yao, J.; Yan, W.; Luo, Z.; Tang, Z. Org. Lett. 2019, 21, 8003.
(h) Chen, C. H.; Hou, C. Q.; Chen, P. H.; Liu, G. S. Chin. J. Chem. 2020, 38, 346.
[17] (a) Qi, X. X.; Chen, P. H.; Liu, G. S. Angew. Chem., Int. Ed. 2017, 56, 9517.
(b) Chen, C. H.; Pfluger, P. M.; Chen, P. H.; Liu, G. S. Angew. Chem., Int. Ed. 2019, 58, 2392.
[18] (a) Farnham, W. B.; Smart, B. E.; Middleton, W. J.; Calabrese, J. C.; Dixon, D. A. J. Am. Chem. Soc. 1985, 107, 4565.
(b) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308.
[19] Newton, J. J.; Jilier, B. J.; Meanwell, M.; Martin, R. E.; Britton, R.; Friesen, C. M. Org. Lett. 2020, 22, 1785.
[20] Marrec, O.; Billard, T.; Vors, J.; Pazenok, P.; Langlois, B. R. Adv. Synth. Catal. 2010, 352:2831.
[21] (a) Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P P. Nat. Chem. 2017, 9, 546.
(b) Jiang, X. H.; Deng, Z. J.; Tang, P. P. Angew. Chem., Int. Ed. 2018, 130, 298.
(c) Liu, J.; Wei, Y. L.; Tang, P. P. J. Am. Chem. Soc. 2018, 140, 15194.
(d) Cong, F.; Wei, Y. L.; Tang, P. P. Chem. Commun. 2018, 54, 4473.
(e) Yang, H. D.; Wang, F.; Jiang, X. H.; Zhou, Y.; Xu, X. F.; Tang, P. P. Angew. Chem., Int. Ed. 2018, 57. 13266.
(f) Wang, F.; Xu, P.; Cong, F.; Tang, P. P. Chem. Sci. 2018, 9, 8836.
(g) Yang, S. Q.; Chen, M.; Tang, P. P. Angew. Chem., Int. Ed. 2019, 58, 7840.
[22] Zhou, M.; Ni, C.; Zeng, Y.; Hu, J. B. J. Am. Chem. Soc. 2018, 140, 6801.
[23] Li. Y.; Yang, Y.; Xin, J. R.; Tang, P. P. Nat. Commun. 2020, 11, 755.
[24] Xu, P.; Guo, S.; Wang, L. Y.; Tang, P. P. Angew. Chem., Int. Ed. 2014, 53, 5955.
[25] Xu, P.; Wang, F.; Fan, G. L.; Xu, X. F.; Tang, P. P. Angew. Chem., Int. Ed. 2017, 56, 1101.
文章导航

/