综述与进展

乙烯基氮杂环丙烷在有机合成中的研究进展

  • 吴雅莉 ,
  • 周雪松 ,
  • 肖文精 ,
  • 陈加荣
展开
  • 华中师范大学化学学院 武汉 430079

收稿日期: 2020-03-27

  修回日期: 2020-04-26

  网络出版日期: 2020-04-30

基金资助

国家自然科学基金(Nos.21971081,91856119)资助项目.

Recent Progress in Applications of Vinylaziridines in Organic Synthesis

  • Wu Yali ,
  • Zhou Xuesong ,
  • Xiao Wenjing ,
  • Chen Jiarong
Expand
  • College of Chemistry, Central China Normal University, Wuhan 430079

Received date: 2020-03-27

  Revised date: 2020-04-26

  Online published: 2020-04-30

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21971081, 91856119).

摘要

乙烯基氮杂环丙烷是有机合成化学中一类重要的合成砌块,由于同时含有烯烃和具有较强张力的氮杂环丙烷官能团,乙烯基氮杂环丙烷有着丰富的反应活性,能够发生多种化学反应.这些反应被广泛用于各种含氮分子,尤其是含氮杂环的合成,如氮杂环丁烷、吡咯烷、哌啶和氮杂环庚烷等杂环化合物.另外,各种取代的乙烯基氮杂环丙烷的简单、高效合成方法的发展,进一步推动了这类试剂在有机合成、医药、农药和化工等领域的应用.近年来,这类试剂仍然一直吸引着众多研究者的兴趣,在有机合成化学领域取得了快速发展.对近五年来乙烯基氮杂环丙烷参与的亲核性开环反应和环化反应进行了综述,并对该领域的发展方向进行了展望.

本文引用格式

吴雅莉 , 周雪松 , 肖文精 , 陈加荣 . 乙烯基氮杂环丙烷在有机合成中的研究进展[J]. 有机化学, 2020 , 40(11) : 3760 -3776 . DOI: 10.6023/cjoc202003061

Abstract

Due to its alkene moiety and highly strained aziridine scaffold, vinylaziridines represent a versatile type of synthetic building blocks and can undergo various chemcial transformations. These transformations enabled facile synthesis of a wide range of nitrogen-containing compounds, especially diverse nitrogen heterocycles, inculding azetidines, pyrrolidines, piperidines, azacycloheptanes and so on. Moreover, development of simple and efficient synthetic methods for various substituted vinylaziridines, stimulating their applications in the fields of organic synthesis, medicinal and agrochemistry, as well as fine chemistry. In recent years, such type of reagents continue to attract considerable research efforts from chemists and enjoyed rapid development. The representative examples of nucleophilic ring-opening and cyclization reactions of vinyl-aziridines over the past five years are summarized. Moreover, the prospects of further development are also disscussed.

参考文献

[1] Lawrence, S. A. Amines:Synthesis Properties and Applications, Cambridge University Press, Cambridge, 2008, p. 371.
[2] Das, P.; Delost, M. D.; Qureshi, M. H.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2019, 62, 4265.
[3] Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
[4] Naito, T. Chem. Pharm. Bull. 2008, 56, 1367.
[5] Bariwal, J.; Van der Eycken, E. Chem. Soc. Rev. 2013, 42, 9283.
[6] Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341.
[7] Trowbridge, A.; Walton, S. M.; Gaunt, M. J. Chem. Rev. 2020, 120, 2613.
[8] Yuan, J.-W.; Liu, C.; Lei, A.-W. Chem. Commun. 2015, 51, 1394.
[9] Ye, Z.; Zhang, F. Chin. J. Chem. 2019, 37, 513.
[10] Heo, Y. M.; Paek, S. M. Molecules 2013, 18, 9650.
[11] Ohno, H. Chem. Rev. 2014, 114, 7784.
[12] Ilardi, E. A.; Njardarson, J. T. J. Org. Chem. 2013, 78, 9533.
[13] Feng, J.-J.; Zhang, J. ACS Catal. 2016, 6, 6651.
[14] Ling, J.; Lam, S. K.; Lo, B.; Lam, S.; Wong, W.-T.; Sun, J.; Chen, G.; Chiu, P. Org. Chem. Front. 2016, 3, 457.
[15] Lin, T.-Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. Org. Lett. 2017, 19, 2897.
[16] Lin, T.-Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. ACS Catal. 2017, 7, 4047.
[17] Trost, B. M.; Osipov, M.; Dong, G.-B. J. Am. Chem. Soc. 2010, 132, 15800.
[18] Wang, G.; Franke, J.; Ngo, C. Q.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 7915.
[19] Mei, G.-J.; Yu, L.; Zhu, Z.-Q.; Sun, M.; Shi, F. Synthesis 2018, 51, 1655.
[20] Yin, J. X.; Mekelburg, T.; Hyland, C. Org. Biomol. Chem. 2014, 12, 9113.
[21] Blackham, E. E.; Knowles, J. P.; Burgess, J.; Booker-Milburn, K. I. Chem. Sci. 2016, 7, 2302.
[22] Kong, L.; Biletskyi, B.; Nuel, D.; Clavier, H. Org. Chem. Front. 2018, 5, 1600.
[23] Sanz, X.; Lee, G. M.; Pubill-Ulldemolins, C.; Bonet, A.; Gulyás, H.; Westcott, S. A.; Bo, C.; Fernández, E. Org. Biomol. Chem. 2013, 11, 7004.
[24] Salvado, O.; Gava, R.; Fernandez, E. Org. Lett. 2019, 21, 9247.
[25] Kang, D.; Kim, T.; Lee, H.; Hong, S. Org. Lett. 2018, 20, 7571.
[26] Fugami, K.; Morizawa, Y.; Ishima, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, 857.
[27] Spears, G. W.; Nakanishi, K.; Ohfune, Y. Synlett 1991, 91.
[28] Aoyagi, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 2002, 67, 5977.
[29] Lowe, M. A.; Ostovar, M.; Ferrini, S.; Chen, C. C.; Lawrence, P. G.; Fontana, F.; Calabrese, A. A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2011, 50, 6370.
[30] Arena, G.; Chen, C. C.; Leonori, D.; Aggarwal, V. K. Org. Lett. 2013, 15, 4250.
[31] Xu, C.-F.; Zheng, B.-H.; Suo, J.-J.; Ding, C.-H.; Hou, X.-L. Angew. Chem., Int. Ed. 2015, 54, 1604.
[32] Yuan, Z.; Wei, W.; Lin, A.; Yao, H. Org. Lett. 2016, 18, 3370.
[33] Li, T.-R.; Cheng, B.-Y.; Fan, S.-Q.; Wang, Y.-N.; Lu, L.-Q.; Xiao, W.-J. Chem. Eur. J. 2016, 22, 6243.
[34] Rivinoja, D. J.; G, Y. S.; Gardiner, M. G.; Ryan, J. H.; Hyland, C. J. T. ACS Catal. 2017, 7, 1053.
[35] Suo, J.-J.; Liu, W.; Du, J.; Ding, C.-H.; Hou, X.-L. Chem. Asian J. 2018, 13, 959.
[36] Zhang, J.-Q.; Tong, F.; Sun, B.-B.; Fan, W.-T.; Chen, J.-B.; Hu, D.; Wang, X.-W. J. Org. Chem. 2018, 83, 2882.
[37] Spielmann, K.; van der Lee, A.; de Figueiredo, R. M.; Campagne, J.-M. Org. Lett. 2018, 20, 1444.
[38] Spielmann, K.; Tosi, E.; Lebrun, A.; Niel, G.; van der Lee, A.; de Figueiredo, R. M.; Campagne, J.-M. Tetrahedron 2018, 74, 6497.
[39] Feng, J.-J.; Lin, T.-Y.; Wu, H.-H.; Zhang, J. J. Am. Chem. Soc. 2015, 137, 3787.
[40] Feng, J.-J.; Lin, T.-Y.; Wu, H.-H.; Zhang, J. L. Angew. Chem., Int. Ed. 2015, 54, 15854.
[41] Feng, J.-J.; Lin, T.-Y.; Zhu, C.-Z.; Wang, H.; Wu, H.-H.; Zhang, J. L. J. Am. Chem. Soc. 2016, 138, 2178.
[42] Zhang, X.; Zou, H.; Huang, G. ChemCatChem 2016, 8, 2549.
[43] Hirner, J. J.; Roth, K. E.; Shi, Y.; Blum, S. A. Organometallics 2012, 31, 6843.
[44] Lin, T.-Y.; Zhu, C.-Z.; Zhang, P.; Wang, Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 10844.
[45] Zhu, C.-Z.; Feng, J.-J.; Zhang, J. Chem. Commun. 2018, 54, 2401.
[46] Zhu, C.-Z.; Feng, J.-J.; Zhang, J. L. Angew. Chem., Int. Ed. 2017, 56, 1351.
[47] Zhu, C.-Z.; Feng, J.-J.; Zhang, J. Chem. Commun. 2017, 53, 4688.
[48] Lin, T.-Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. Org. Lett. 2018, 20, 3587.
[49] Wan, S.-H.; Liu, S.-T. Tetrahedron 2019, 75, 1166.
[50] Ghorai, M. K.; Tiwari, D. P. J. Org. Chem. 2010, 75, 6173.
[51] Lin, T.-Y.; Wu, H.-H.; Feng, J.-J.; Zhang, J. Org. Lett. 2017, 19, 6526.
[52] Jiang, F.; Yuan, F.-R.; Jin, L.-W.; Mei, G.-J.; Shi, F. ACS Catal. 2018, 8, 10234.
[53] Lam, S. K.; Lam, S.; Wong, W.-T.; Chiu, P. Chem. Commun. 2014, 50, 1738.
[54] Wani, I. A.; Sayyad, M.; Ghorai, M. K. Chem. Commun. 2017, 53, 4386.
[55] Pradhan, S.; Shahi, C. K.; Bhattacharyya, A.; Chauhan, N.; Ghorai, M. K. Org. Lett. 2017, 19, 3438.
[56] Mal, A.; Wani, I. A.; Goswami, G.; Ghorai, M. K. J. Org. Chem. 2018, 83, 7907.
[57] Wang, Y.-N.; Li, T.-R.; Zhang, M.-M.; Cheng, B.-Y.; Lu, L.-Q.; Xiao, W.-J. J. Org. Chem. 2016, 81, 10491.
[58] Du, Z.-T.; Shao, Z.-H. Chem. Soc. Rev. 2013, 42, 1337.
[59] Naesborg, L.; Tur, F.; Meazza, M.; Blom, J.; Halskov, K. S.; Jørgensen, K. A. Chem. Eur. J. 2017, 23, 268.
[60] Chen, Z.-C.; Chen, Z.; Yang, Z.-H.; Guo, L.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2019, 58, 15021.
[61] Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.
[62] Taniguchi, T. Synthesis 2017, 49, 3511.
[63] Miura, K.; Fugami, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 5135.
[64] Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Miller, R. F. J. Am. Chem. Soc. 1988, 110, 3300.
[65] Hashimoto, T.; Takino, K.; Hato, K.; Maruoka, K. Angew. Chem., Int. Ed. 2016, 55, 8081.
[66] Hu, X.-Q.; Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauchemin, A. M.; Xiao, W.-J. Angew. Chem. Int. Ed. 2014, 53, 12163.
[67] Zhao, Q.-Q.; Zhou, X.-S.; Xu, S.-H.; Wu, Y.-L.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2020, 22, 2470.
[68] Zhang, X.; Huang, Q.-F.; Zou, W.-L.; Li, Q.-Z.; Feng, X.; Jia, Z.-Q.; Liu, Y.; Li, J.-L.; Wang, Q.-W. Org. Chem. Front. 2019, 6, 3321.
[69] Wang, Q.; Chang, H.; Wei, W.; Liu, Q.; Gao, W.; Li, Y.; Li, X. Chin. J. Org. Chem. 2016, 36, 939(in Chinese). (王清宇, 常宏宏, 魏文珑, 刘强, 高文超, 李彦威, 李兴, 有机化学, 2016, 36, 939.)
[70] Chai, Z. Synthesis 2020, 52, 1738.
[71] Ling, J.; Lam, S.; Low, K. H.; Chiu, P. Angew. Chem. Int. Ed. 2017, 56, 8879.
[72] Moragas, T.; Liffey, R. M.; Regentova, D.; Ward, J. P.; Dutton, J.; Lewis, W.; Churcher, I.; Walton, L.; Souto, J. A.; Stockman, R. A. Angew. Chem., Int. Ed. 2016, 55, 10047.
[73] Kaldas, S. J.; Kran, E.; Muck-Lichtenfeld, C.; Yudin, A. K.; Studer, A. Chem. Eur. J. 2020, 26, 1501.
[74] Wu, A.; Feng, Q.; Sung, H. H. Y.; Williams, I. D.; Sun, J. Angew. Chem., Int. Ed. 2019, 58, 6776.
文章导航

/