研究简报

Rh2(OAc)4催化的Wittig-Type烯基化反应: 一种合成烷基、芳基取代的亚烷基丙二酸酯的简便方法

  • 邓超 ,
  • 周姣龙 ,
  • 刘华魁 ,
  • 王丽佳 ,
  • 唐勇
展开
  • a中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
    b南京农业大学理学院 江苏省农药学重点实验室 南京 210095
    c华东师范大学化学与分子工程学院 上海 200241

收稿日期: 2019-02-28

  修回日期: 2019-04-12

  网络出版日期: 2020-05-08

Rh2(OAc)4 Catalyzed Wittig-Type Olefination: A Facile Access to Alkylidene and Arylidene Malonates

  • Deng Chao ,
  • Zhou Jiaolong ,
  • Liu Huakui ,
  • Wang Lijia ,
  • Tang Yong
Expand
  • aState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    bJiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095
    cSchool of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241

Received date: 2019-02-28

  Revised date: 2019-04-12

  Online published: 2020-05-08

摘要

发展了一种羰基化合物与重氮丙二酸二甲酯在三苯基砷和催化量的Rh2(OAc)4作用下发生一锅反应, 合成芳基、烷基取代的亚烷基丙二酸酯的新方法. 该方法的底物范围很广, 包括芳香醛和脂肪醛以及酮等羰基化合物, 都能够顺利地进行反应, 得到中等至优良的收率(59%~99%). 在0.5 mol%的铑催化剂作用下, 能够实现克级反应. 初步的机理研究表明, 这一烯烃化反应是通过铑-卡宾转化为砷叶立德的途径实现的.

本文引用格式

邓超 , 周姣龙 , 刘华魁 , 王丽佳 , 唐勇 . Rh2(OAc)4催化的Wittig-Type烯基化反应: 一种合成烷基、芳基取代的亚烷基丙二酸酯的简便方法[J]. 有机化学, 2019 , 39(8) : 2328 -2332 . DOI: 10.6023/cjoc201902036

Abstract

In the presence of triphenylarsine and catalytic amount of Rh2(OAc)4, one pot reactions with carbonyl compounds and dimethyl diazomalonate give the corresponding alkylidene and arylidene malonates in moderate to excellent yields (59%~99%). The scope of the carbonyl compounds covered a broad range, including aromatic and aliphatic aldehydes and ketone. The reaction was easily scaled up to gram scale with 0.5 mol% rhodium catalyst loading. The preliminary mechanistic studies showed that the olefination proceeded via a rhodium-carbene transformed arsonium ylide pathway.

参考文献

[1] For selected examples on the use of α,β-unsaturated malonates, see:
(a) Evans, D. A.; Rovis, T.; Kozlowski, M. C.; Downey, C. W.; Tedrow, J. S. J. Am. Chem. Soc. 2000, 122, 9134.
(b) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030.
(c) Loosley, B. C.; Andersen, R. J.; Dake, G. R. Org. Lett. 2013, 15, 1152.
(d) Zhao, X.; Liu, X.; Mei, H.; Guo, J.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2015, 54, 4032.
[2] Knoevenagel E.Ber. Dtsch.Chem. Ges. 1898, 31, 2596.
[3] (a) Wittig, G.; Geissler, G. Liebigs Ann. 1953, 580, 44.
(b) Cao, C. Z.; Liu, L. Q.; Chen, G. F.; Zhou, Z. C.; Jiang, R. Q.; Lu, B. T. Chin. J. Org. Chem. 2010, 30, 395 (in Chinese).
(曹晨忠, 刘立秋, 陈冠凡, 周再春, 蒋荣清, 卢冰涛, 2010, 30, 395.)
(c) Li, X. L.; Wang, W.; Li, R.; Zhang, P. Z.; Chen, H. Chin. J. Org. Chem. 2012, 32, 1519 (in Chinese).
(李小六, 王玮, 李锐, 张平竹, 陈华, 2012, 32, 1519.)
(d) Yu, J.; Lin, J. H.; Xiao, J. C. Chin. J. Org. Chem. 2019, 39, 265 (in Chinese).
(于蛟, 林锦鸿, 肖吉昌, 2019, 39, 265.)
[4] Allen C. F.H.; Spangler, F. W.Org. Synth. 1955, 3, 377.
[5] Cao P.; Li C.-Y.; Kang Y.-B.; Xie Z. W.; Sun X-L.;Tang Y.J. Org. Chem. 2007, 72, 6628.
[6] Wang P.; Liu C.-R.; Sun X.-L.; Chen S.-S.; li J.-F.; Xie Z. W.; Tang Y. Chem. Commun.2012, 48, 290.
[7] Liao Y.; Huang Y.-Z. Tetrahedron Lett.1990, 31, 5897.
[8] Zhou Z.-L.; Huang Y.-Z.; Shi L. -L. Tetrahedron1993, 49, 6821.
[9] (a) Ye, S.; Huang, Z.-Z.; Xia, C.-A.; Tang, Y.; Dai, L. X. J. Am. Chem. Soc. 2002, 124, 2432.
(b) Liao, W.-W.; Li, K.; Tang, Y. J. Am. Chem. Soc. 2003, 125, 13030.
(c) Zheng, J.-C.; Liao, W.-W.; Tang, Y.; Sun, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2005, 127, 12222.
(d) Deng, X.-M.; Cai, P.; Ye, S.; Sun, X.-L.; Liao, W.-W.; Li, K.; Tang, Y.; Wu, Y.-D.; Dai, L.-X. J. Am. Chem. Soc. 2006, 128, 9730.
(e) Li, C.-Y.; Sun, X.-L.; Jing, Q.; Tang, Y. Chem. Commun. 2006, 2980.
(f) Li, C.-Y.; Wang, X.-B.; Sun, X.-L.; Tang, Y.; Zheng, J.-C.; Xu, Z.-H.; Zhou, Y.-G.; Dai, L.-X. J. Am. Chem. Soc., 2007, 129, 1494.
[10] (a) Doyle, M. P.; Davies, S. B.; Hu, W. H. Org. Lett. 2000, 2, 1145.
(b) Doyle, M. P.; Hu, W. H. ARKIVOC 2003, 15.
(c) Nishimura, T.; Maeda, Y.; Hayashi, T. Angew. Chem., Int. Ed. 2010, 49, 7324.
(d) Deng, C.; Liu, H.-K. Liu, Zheng, Z.-B.; Wang, L.; Yu, X.; Zhang, W.; Tang, Y. Org. Lett. 2017, 19, 5717.
[11] Lebel H.; Paquet, V. J. Am. Chem. Soc.2004, 126, 320.
[12] (a) Clark, C. T.; Lake, J. F.; Scheidt, K. A. J. Am. Chem. Soc. 2003, 126, 84.
(b) Fallan, C.; Quigley, P. F.; Lam, H. W. J. Org. Chem. 2011, 76, 4112.
(c) Magar, D. R.; Chang, C.; Ting, Y.-F.; Chen, K. Eur. J. Org. Chem. 2010, 2010, 2062.
(d) Mikami, K.; Ohmura, H. Org. Lett. 2002, 4, 3355.
(e) Pedduri, Y.; Williamson, J. S. Tetrahedron Lett. 2008, 49, 6009.
(f) Shi, Y.-H.; Wang, Z.; Hu, B.; Wang, M.; Fossey, J. S.; Deng, W.-P. Org. Lett. 2011, 13, 6010.
(g) Yamada, K.-I.; Konishi, T.; Nakano, M.; Fujii, S.; Cadou, R.; Yamamoto, Y.; Tomioka, K. J. Org. Chem. 2012, 77, 5775.
文章导航

/