综述与进展

基于主客体作用构筑的聚集诱导发光型超分子组装体在生物医用领域的研究进展

  • 田雪琪 ,
  • 左旻瓒 ,
  • 牛蓬勃 ,
  • 王开亚 ,
  • 胡晓玉
展开
  • 南京航空航天大学材料与科学技术学院 南京 211106

收稿日期: 2020-03-30

  修回日期: 2020-04-21

  网络出版日期: 2020-05-08

基金资助

江苏省自然科学基金(No.BK20180055)、中央高校基本科研专项资金(No.NE2019002)和中国博士后科学基金(No.2019M661816)资助项目.

Research Advances of Host-Guest Supramolecular Self-Assemblies with Aggregration-Induced Emission Effect and Their Applications in Biomedical Field

  • Tian Xueqi ,
  • Zuo Minzan ,
  • Niu Pengbo ,
  • Wang Kaiya ,
  • Hu Xiaoyu
Expand
  • College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106

Received date: 2020-03-30

  Revised date: 2020-04-21

  Online published: 2020-05-08

Supported by

Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20180055), the Fundamental Research Funds for the Central Universities (No. NE2019002) and the China Postdoctoral Science Foundation Project (No. 2019M661816).

摘要

主客体相互作用是超分子自组装过程中最重要的作用方式之一,常被用于构建多功能超分子材料.基于主客体相互作用,利用具有聚集诱导发光性质的大环主体分子或客体分子作为自组装基元,构筑具有聚集诱导发光效应的超分子体系,并将其应用于药物递送、细胞成像、生物传感等生物领域,已成为超分子化学的研究热点.从超分子组装体的发光效应分别源于主体分子和客体分子两方面,介绍了近五年来以环糊精、杯芳烃、葫芦脲、柱芳烃及其它大环为主体化合物,基于主客体作用构筑的聚集诱导发光超分子组装体,并对其在生物医用领域的研究进展进行了简要综述.

本文引用格式

田雪琪 , 左旻瓒 , 牛蓬勃 , 王开亚 , 胡晓玉 . 基于主客体作用构筑的聚集诱导发光型超分子组装体在生物医用领域的研究进展[J]. 有机化学, 2020 , 40(7) : 1823 -1834 . DOI: 10.6023/cjoc202003066

Abstract

Host-guest interaction, as one of the most important behaviors in supramolecular self-assemblies, is often used to construct functional supramolecular materials. Based on host-guest interaction, it has become a hotspot in supramolecular chemistry by utilizing macrocyclic hosts and guests with aggregation-induced emission (AIE) properties as building blocks to construct supramolecular system, which can be widely used in drug delivery, cellular imaging, biosensing and so on. According to the origination of fluorescence effects of supramolecular assemblies, either from the host or guest molecules, the recent 5-year advances of AIE supramolecular self-assemblies based on host-guest interaction by utilizing macrocycles such as cyclodextrin, calixarene, cucurbituril, pillararene and other water-soluble host molecules are summarized, and their applications in the biomedical field are discussed.

参考文献

[1] Lehn, J.-M. Angew. Chem., Int. Ed. 1988, 27, 89.
[2] Shao, W.; Liu, X.; Wang, T.; Hu, X. Chin. J. Org. Chem. 2018, 38, 1107(in Chinese). (邵为, 刘昕, 王婷婷, 胡晓玉, 有机化学, 2018, 38, 1107.)
[3] Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813.
[4] Blanazs, A.; Armes, S. P.; Ryan, A. J. Macromol. Rapid Comm. 2009, 30, 267.
[5] Xu, Z.-Y.; Zhang, Y.-C.; Lin, J.-L.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Prog. Chem. 2019, 31, 1540(in Chinese). (徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭, 化学进展, 2019, 31, 1540.)
[6] Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Angew. Chem., Int. Ed. 2003, 42, 4640.
[7] Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Mol. Pharm. 2010, 7, 1899.
[8] Mura, S.; Nicolas, J.; Couvreur, P. Nat. Mater. 2013, 12, 991.
[9] Gao, T.; Li, L.; Wang, B.; Zhi, J.; Xiang, Y.; Li, G. Anal. Chem. 2016, 88, 9996.
[10] Ma, X.; Zhao, Y. Chem. Rev. 2015, 115, 7794.
[11] Zhao, J.-Y.; Yang, Y.; Han, X.; Liang, C.; Liu, J.-J.; Song, X.-J.; Ge, Z.-L.; Liu, Z. ACS Appl. Mater. Interfaces 2017, 9, 23555.
[12] Duan, Q.-P.; Cao, Y.; Li, Y.; Hu, X.-Y.; Xiao, T.-X.; Lin, C.; Pan, Y.; Wang, L.-Y. J. Am. Chem. Soc. 2013, 135, 10542.
[13] Chen, P.-P.; Shi, B.-B. Prog. Chem. 2017, 29, 720(in Chinese). (陈盼盼, 史兵兵, 化学进展, 2017, 29, 720.)
[14] Birks, J. B. Photophysics of Aromatic Molecules, Wiley Interscience, London, 1970.
[15] An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. J. Am. Chem. Soc. 2002, 124, 14410.
[16] Luo, J.-D.; Xie, Z.-L.; Lam, J. W. Y.; Cheng, L.; Tang, B.-Z.; Chen, H.-Y.; Qiu, C.-F.; Kwok, H. S.; Zhan, X.-W.; Liu, Y.-Q.; Zhu, D.-B. Chem. Commun. 2001, 1740.
[17] Jiang, B.-P.; Guo, D.-S.; Liu, Y.-C.; Wang, K.-P.; Liu, Y. ACS Nano 2014, 8, 1609.
[18] Zhang, S.; Qin, A.-J.; Sun, J.-Z.; Tang, B.-Z. Prog. Chem. 2011, 23, 623(in Chinese). (张双, 秦安军, 孙景志, 唐本忠, 化学进展, 2011, 23, 623).
[19] Qian, Y.; Jie, L.-H.; Wang, S.-Q.; Yang, G.-Q. J. Nanjing Univ. Posts Telecommun. (Nat. Sci.) 2008, 28, 1(in Chinese). (钱妍, 解令海, 王双清, 杨国强, 南京邮电大学学报(自然科学版), 2008, 28, 1.)
[20] Tang, B.-Z.; Zhan, X.-W.; Yu, G.; Lee, P.; Liu, Y.-Q.; Zhu, D.-B. J. Mater. Chem. 2001, 11, 2974.
[21] Zhou, J.; Hua, B.; Shao, L.; Feng, H.; Yu, G.-C. Chem. Commun. 2016, 52, 5749.
[22] Wang, P.; Yan, X.-Z.; Huang, F.-H. Chem. Commun. 2014, 50, 5017.
[23] Cram, D. J.; Cram, J. M. Science 1974, 183, 803.
[24] Zhang, L.-X.; Chen, Q. Synth. Mater. Aging Appl. 2018, 47, 108(in Chinese). (张来新, 陈琦, 合成材料老化与应用, 2018, 47, 108.)
[25] Liang, G.; Lam, J. W. Y.; Qin, W.; Li, J.; Xie, N.; Tang, B.-Z. Chem. Commun. 2014, 50, 1725.
[26] Xu, L.-X. Ph.D. Dissertation, South China University of Technology, Guangzhou, 2019 (in Chinese). (许林贤, 博士论文, 华南理工大学, 广州, 2019.)
[27] Wang, Y.; Yang, N.; Wang, D.-D.; He, Y.; Chen, L.; Zhao, Y.-P. Polym. Degrad. Stab. 2018, 147, 123.
[28] Zhang, P.; Qian, X.-P.; Zhang, Z.-K.; Li, C.; Xie, C.; Wu, W.; Jiang, X.-Q. ACS Appl. Mater. Interfaces 2017, 9, 5768.
[29] Bortolus, P.; Grabner, G.; Kohler, G.; Monti, S. Coord. Chem. Rev. 1993, 125, 261.
[30] Zhang, L.; Hu, W.; Yu, L.; Wang, Y. Chem. Commun. 2015, 51, 4298.
[31] Zhao, Q.; Chen, Y.; Sun, M.; Wu, X.-J.; Liu, Y. RSC Adv. 2016, 6, 50673.
[32] Li, Q.-L.; Wang, D.; Cui, Y.-Z.; Fan, Z.-Y.; Ren, L.; Li, D.-D.; Yu, J.-H. ACS Appl. Mater. Interfaces 2018, 10, 12155.
[33] Guo, Y.-M.; Cao, F.-P.; Lei, X.-L.; Mang, L.-H.; Cheng, S.-J.; Song, J.-T. Nanoscale 2016, 8, 4852.
[34] Huang, Y.-Y.; Ji, J.-H.; Zhang, J.; Wang, F.; Lei, J.-P. Chem. Commun. 2020, 56, 313.
[35] Barrow, S. J.; Kasera, S.; Rowland, M. J.; Del Barrio, J.; Scherman, O. A. Chem. Rev. 2015, 115, 12320.
[36] Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844.
[37] Masson, E.; Ling, X.-X.; Roymon, J.; Lawrence, K. M.; Lu, X.-Y. RSC Adv. 2012, 2, 1213.
[38] Chen, J.-F.; Liu, Y.-M.; Mao, D.-K.; Ma, D. Chem. Commun. 2017, 53, 8739.
[39] Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.; Nakamoto, Y. J. Am. Chem. Soc. 2008, 130, 5022.
[40] Ogoshi, T.; Yamagishi, T. A.; Nakamoto, Y. Chem. Rev. 2016, 116, 7937.
[41] Xue, M.; Yang, Y.; Chi, X.-D.; Zhang, Z.-B.; Huang, F.-H. Acc. Chem. Res. 2012, 45, 1294.
[42] Cao, D.-R.; Meier, H. Chin. Chem. Lett. 2019, 30, 1758.
[43] Zhang, H.-C.; Liu, Z.-N.; Xin, F.-F.; Hao, A.-Y. Chin. J. Org. Chem. 2012, 32, 219(in Chinese). (张华承, 刘召娜, 辛飞飞, 郝爱友, 有机化学, 2012, 32, 219.)
[44] Sun, J.-F.; Shao, L.; Zhou, J.; Hua, B.; Zhang, Z.-H.; Li, Q.; Yang, J. Tetrahedron Lett. 2018, 59, 147.
[45] Zhang, C.-W.; Ou, B.; Jiang, S.-T.; Yin, G.-Q.; Chen, L.-J.; Xu, L.; Li, X.-P.; Yang, H.-B. Polym. Chem.-UK 2018, 9, 2021.
[46] Wang, P.; Liang, B.-C.; Xia, Y.-D. Inorg. Chem. 2019, 58, 2252.
[47] Wu, Y.-H.; Chen, Q.-X.; Li, Q.-Y.; Lu, H.-G.; Wu, X.-S.; Ma, J.-B.; Gao, H. J. Mater. Chem. B 2016, 4, 6350.
[48] Dong, R.-J.; Ravinathan, S. P.; Xue, L.-Z.; Li, N.; Zhang, Y.-J.; Zhou, L.-Z.; Cao, C.-X.; Zhu, X.-Y. Chem. Commun. 2016, 52, 7950.
[49] Hui, X.; Xu, D.-Z.; Wang, K.; Yu, W.-J.; Yuang, H.-Y.; Liu, M.-Y.; Shen, Z.-Y.; Zhang, X.-Y.; Wei, Y. RSC Adv. 2015, 5, 107355.
[50] Huang, H.; Xu, D.; Liu, M.; Jiang, R.; Mao, L.; Huang, Q.; Wan, Q.; Wen, Y.; Zhang, X.-Y.; Wei, Y. Mater. Sci. Eng., C 2017, 78, 862.
[51] Xu, D.-Z.; Liu, M.-Y.; Zou, H.; Huang, Q.; Huang, H.-Y.; Tian, J.-W.; Jiang, R.-M.; Wen, Y.-Q.; Zhang, X.-Y.; Wei, Y. J. Taiwan Inst. Chem. Eng. 2017, 78, 455.
[52] Guo, L.-L.; Xu, D.-Z.; Huang, L.; Liu, M.-Y.; Huang, H.-Y.; Tian, J.-W.; Jiang, R.-M.; Wen, Y.-Q.; Zhang, X.-Y.; Wei, Y. Mater. Sci. Eng., C 2018, 85, 233.
[53] Liow, S.-S.; Zhou, H.; Sugiarto, S.; Guo, S.-F.; Chalasani, M. L. S.; Verma, N. K.; Xu, J.-W.; Loh, X.-J. Biomacromolecules 2017, 18, 886.
[54] Perret, F.; Coleman, A. W. Chem. Commun. 2011, 47, 7303.
[55] Tian, H.-W.; Liu, Y.-C.; Guo, D.-S. Mater. Chem. Front. 2020, 4, 46.
[56] Guo, D.-S.; Liu, Y. Acc. Chem. Res. 2014, 47, 1925.
[57] Guo, D.-S.; Liu, Y. Chem. Soc. Rev. 2012, 41, 5907.
[58] Jiang, B.-P.; Guo, D.-S.; Liu, Y.-C.; Wang, K.-P.; Liu, Y. ACS Nano. 2014, 8, 1609.
[59] Chen, C.; Ni, X.; Tian, H.-W.; Liu, Q.; Guo, D.-S.; Ding, D. Angew. Chem., Int. Ed. 2020, 59, 10008.
[60] Wu, D.; Li, Y.; Yang, J.; Shen, J.; Zhou, J.; Hu, Q.-L.; Yu, G.-C.; Tang, G.-P.; Chen, X.-Y. ACS Appl. Mater. Interfaces 2017, 9, 44392.
[61] Yao, C.; Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhang, F.; Li, Z.-T. Chin. Chem. Lett. 2017, 28, 893.
[62] Tian, J.; Chen, L.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2016, 52, 6351.
[63] Wang, H.; Zhang, D.-W.; Zhao, X.; Li, Z.-T. Acta Chim. Sinica 2015, 73, 471(in Chinese). (王辉, 张丹维, 赵新, 黎占亭, 化学学报, 2015, 73, 471.)
[64] Li, Y.-W.; Dong, Y.-H.; Miao, X.-R.; Ren, Y.-L.; Zhang, B.-L.; Wang, P.-P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L.-P. Angew. Chem., Int. Ed. 2018, 57, 729.
[65] Liu, H.; Zhang, Z.-H.; Zhao, Y.-J.; Zhou, Y.-X.; Xue, B.; Han, Y.-C.; Wang, Y.-L.; Mu, X.-L.; Zang, S.-L.; Zhou, X.-F.; Li, Z.-B. J. Mater. Chem. B 2019, 7, 1435.
[66] Yu, G.-C.; Tang, G.-P.; Huang, F.-H. J. Mater. Chem. C 2014, 2, 6609.
[67] Yu, G.-C.; Wu, D.; Li, Y.; Zhang, Z.-H.; Shao, L.; Zhou, J.; Hu, Q.-L.; Tang, G.-P.; Huang, F.-H. Chem. Sci. 2016, 7, 3017.
[68] Yu, G.-C.; Zhao, R.; Wu, D.; Zhang, F.-W.; Shao, L.; Zhou, J.; Yang, J.; Tang, G.-P.; Chen, X.-Y.; Huang, F.-H. Polym. Chem.-UK 2016, 7, 6178.
[69] Wang, Y.; Lv, M.-Z.; Song, N.; Liu, Z.-J.; Wang, C.-Y.; Yang, Y.-W. Macromolecules 2017, 50, 5759.
[70] Zhang, C.-W.; Jiang, S.-T.; Yin, G.-Q.; Li, X.; Zhao, X.-L.; Yang, H.-B. Isr. J. Chem. 2018, 58, 1265.
[71] Li, X.-S.; Han, J.-Y.; Qin, J.-C.; Sun, M.; Wu, J,-R.; Lei, L.-C.; Li, J.; Fang, L.; Yang, Y.-W. Chem. Commun. 2019, 55, 14099.
[72] Chi, X.-D.; Zhang, H.-C.; Vargas-Zúñiga, G. I.; Peters, G. M.; Sessler, J. L. J. Am. Chem. Soc. 2016, 138, 5829.
[73] Gao, J.; Guo, D.-S. Sci. Sin.:Chim. 2019, 49, 811(in Chinese). (高杰, 郭东升, 中国科学:化学, 2019, 49, 811.)
[74] Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304(in Chinese). (杨杰, 李振, 有机化学, 2019, 39, 3304.)
[75] Lou, X.-Y.; Yang, Y.-W. Adv. Opt. Mater. 2018, 6, 1800668.
[76] Li, Y.-W.; Ao, W.-T.; Jin, H.-L.; Cao, L.-P. Prog. Chem. 2019, 31, 121(in Chinese). (李亚雯, 敖宛彤, 金慧琳, 曹利平, 化学进展, 2019, 31, 121.)
[77] Li, B.; He, T.; Shen, X.; Tang, D.-T.; Yin, S.-C. Polym. Chem.-UK 2019, 10, 796.
[78] Chen, H.; Li, M.-H. Chin. J. Polym. Sci. 2019, 37, 352.
文章导航

/