研究论文

铑催化碳氢二氟烯丙基化/N-碘代丁二酰亚胺介导的环化反应构建含氟3,4-二氢嘧啶并[1,6-a]吲哚-1(2H)-酮衍生物

  • 赵森 ,
  • 李淳朴 ,
  • 许斌 ,
  • 柳红
展开
  • a 上海大学理学院化学系 上海 200444;
    b 中国科学院上海药物研究所 新药研究国家重点实验室 上海 201203;
    c 中国科学院上海药物研究所 受体结构与功能重点实验室 上海 201203

收稿日期: 2020-04-25

  修回日期: 2020-04-30

  网络出版日期: 2020-05-08

基金资助

国家自然科学基金(Nos.81620108027,21632008,91229204,81220108025)、中国科学院战略性先导科技专项(Nos.XDA12020375,XDA12050411)资助项目.

Cp*Rh(III)-Catalyzed C—H 3,3-Difluoroallylation of Indoles and N-Iodosuccinimide-Mediated Cyclization for the Synthesis of Fluorinated 3,4-Dihydropyrimido-[1,6-a]-indol-1(2H)-one Derivatives

  • Zhao Sen ,
  • Li Chunpu ,
  • Xu Bin ,
  • Liu Hong
Expand
  • a Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444;
    b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203;
    c Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203

Received date: 2020-04-25

  Revised date: 2020-04-30

  Online published: 2020-05-08

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 81620108027, 21632008, 91229204, 81220108025) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDA12020375, XDA12050411).

摘要

发展了一种通过铑催化碳氢二氟烯丙基化/N-碘代丁二酰亚胺(NIS)介导的环化反应构建含氟3,4-二氢嘧啶并[1,6-a]吲哚-1(2H)-酮衍生物的方法.该方法具有反应条件温和、底物适用范围广等优点.该方法为构建用于发现药物的含氟杂环化合物提供了潜在的策略.

本文引用格式

赵森 , 李淳朴 , 许斌 , 柳红 . 铑催化碳氢二氟烯丙基化/N-碘代丁二酰亚胺介导的环化反应构建含氟3,4-二氢嘧啶并[1,6-a]吲哚-1(2H)-酮衍生物[J]. 有机化学, 2020 , 40(6) : 1549 -1562 . DOI: 10.6023/cjoc202004039

Abstract

A mild and facile two-step strategy has been developed for the synthesis of fluorinated 3,4-dihydropyrimido-[1,6-a]-indol-1(2H)-ones through Cp*Rh(III)-catalyzed C-H 3,3-difluoroallylation and N-iodosuccinimide (NIS)-mediated cyclization. This strategy featured broad synthetic generality, unique versatility and high efficiency, which provided a potential tool for the construction of fluorine-containing heterocycles for drug discovery.

参考文献

[1] (a) Mizuta, M.; Seio, K.; Miyata, K.; Sekine, M. J. Org. Chem. 2007, 72, 5046.
(b) Bandurco, V. T.; Wong, E. M.; Levine, S. D.; Hajos, Z. G. J. Med. Chem. 1981, 24, 1455.
(c) Hammer, H.; Winterfeldt, E. Tetrahedron 1981, 37, 3609.
(d) Kato, M.; Nishino, S.; Iro, K.; Yamakuni, H.; Takasugi, H. Chem. Pharm. Bull. 1994, 42, 2556.
(e) Wright, W. B.; Brabander, H. J. J. Med. Chem. 1968, 11, 1164.
[2] (a) Zhang, Y.; Zheng, J.; Cui, S. J. Org. Chem. 2014, 79, 6490.
(b) Zheng, J.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16, 3560.
(c) Chen, X.; Hu, X.; Bai, S.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2016, 18, 192.
[3] (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(e) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[4] (a) Price, D. A.; Armour, D.; de Groot, M.; Leishman, D.; Napier, C.; Perros, M.; Stammen, B. L.; Wood, A. Bioorg. Med. Chem. Lett. 2006, 16, 4633.
(b) Xue, F.; Li, H.; Delker, S. L.; Fang, J.; Martásek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. J. Am. Chem. Soc. 2010, 132, 14229.
(c) Zhou, Q.; Ruffoni, A.; Gianatassio, R.; Fujiwara, Y.; Sella, E.; Shabat, D.; Baran, P. S. Angew. Chem., Int. Ed. 2013, 52, 3949.
(d) Massa, M. A.; Spangler, D. P.; Durley, R. C.; Hickory, B. S.; Connolly, D. T.; Witherbee, B. J.; Smith, M. E.; Sikorski, J. A. Bioorg. Med. Chem. Lett. 2001, 11, 1625.
[5] Middleton, W. J.; Bingham, E. M. J. Org. Chem. 1980, 45, 2883.
[6] (a) Fujita, T.; Sugiyama, K.; Sanada, S.; Ichitsuka, T.; Ichikawa, J. Org. Lett. 2016, 18, 248.
(b) S. Akiyama, S.; Kubota, K.; Mikus, M. S.; Paioti, P. H. S.; Romiti, F.; Liu, Q.; Zhou, Y.; Hoveyda, A. H.; Ito, H. Angew. Chem., Int. Ed. 2019, 58, 11998.
(c) Cogswell, T. J.; Dahlen A.; Knerr, L. Chem.-Eur. J. 2019, 25, 1184.
[7] Min, Q. Q.; Yin, Z.; Feng, Z.; Guo, W. H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 1230.
[8] Li, C.; Zhang, D.; Zhu, W.; Wan, P.; Liu, H. Org. Chem. Front. 2016, 3, 1080.
[9] Ni, J.; Zhao, H.; Zhang, A. Org. Lett. 2017, 19, 3159.
[10] (a) Wu, X.; Wang, B.; Zhou, S.; Zhou, Y.; Liu, H. ACS Catal. 2017, 7, 2494.
(b) Wu, X.; Wang, B.; Zhou, Y.; Liu, H. Org. Lett. 2017, 19, 1294.
(c) Xie, Y.; Wu, X.; Li, C.; Wang, J.; Li, J.; Liu, H. J. Org. Chem. 2017, 82, 5263.
(d) Fei, X.; Li, C.; Yu X.; Liu, H. J. Org. Chem. 2019, 84, 6840.
(e) Yang, L.; Li, C.; Wang, D.; Liu, H. J. Org. Chem. 2019, 84, 7320.
[11] (a) Dai, H.; Yu, C.; Wang, Z.; Yan, H.; Lu, C. Org. Lett. 2016, 18, 3410.
(b) Dutta, U.; Deb, A.; Lupton, D. W.; Maiti, D. Chem. Commun. 2015, 51, 17744.
[12] (a) Zhang, L.; Zhu, M.; Ni, S.; Wen, L.; Li, M. ACS Catal. 2019, 9, 1680.
(b) Kong, W.; Chen, X.; Wang, M.; Dai, H.; Yu, J. Org. Lett. 2018, 20, 284.
[13] Nihei, T.; Iwai, N.; Matsuda, T.; Kitazume, T. J. Org. Chem. 2005, 70, 5912.
文章导航

/