研究简报

6α和6β-羟基去氧胆酸的合成

  • 牛伟 ,
  • 肖丹 ,
  • 程航 ,
  • 徐亮
展开
  • 四川大学华西药学院 天然药物系暨教育部靶向药物重点实验室 成都 610041

收稿日期: 2020-02-07

  修回日期: 2020-04-21

  网络出版日期: 2020-05-11

基金资助

国家自然科学基金(No.21871190)资助项目.

Synthesis of 6α- and 6β-Hydroxydeoxycholic Acid

  • Niu Wei ,
  • Xiao Dan ,
  • Cheng Hang ,
  • Xu Liang
Expand
  • Key Laboratory of Drug Targeting, Ministry of Education, Department of Chemistry of Medicinal Natural Products, West China College of Pharmacy, Sichuan University, Chengdu 610041

Received date: 2020-02-07

  Revised date: 2020-04-21

  Online published: 2020-05-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 21871190).

摘要

6α和6β-羟基去氧胆酸[DCA-6α-ol(6)和DCA-6β-ol(7)]是新近鉴定的两个来自于人类肝脏的重要三级胆汁酸代谢产物.以胆酸(1)为起始原料经10步反应方便快捷地同时实现DCA-6α-ol(6)和DCA-6β-ol(7)的合成.路线涉及Mukaiyama羟醛缩合、臭氧裂解和SmI2促进的羰基邻位还原脱氧等关键反应.

本文引用格式

牛伟 , 肖丹 , 程航 , 徐亮 . 6α和6β-羟基去氧胆酸的合成[J]. 有机化学, 2020 , 40(7) : 2114 -2119 . DOI: 10.6023/cjoc202002008

Abstract

6α- and 6β-hydroxydeoxycholic acids[DCA-6α-ol (6) and DCA-6β-ol (7)] are recently identified important tertiary bile acids derived from deoxycholic acid (3) in human liver. A rapid and robust synthesis of DCA-6α-ol (6) and DCA-6β-ol (7) from cholic acid (1) in 10 steps involing the key Mukaiyama aldol condensation, ozone oxidative cleavage and SmI2 promoted reductive deoxygenation was conducted.

参考文献

[1] Monte, M. J.; Marin, J. J.; Antelo, A.; Vazqueztato, J. World J. Gastroenterol. 2009, 15, 804.
[2] Chiang, J. Y. L. J. Lipid Res. 2009, 50, 1955.
[3] Ridlon, J. M.; Kang, D.; Hylemon, P. B. J. Lipid Res. 2006, 47, 241.
[4] Hofmann, A. F. Front. Biosci., Landmark Ed. 2009, 14, 2584.
[5] (a) Zhang, J.; Gao, L.; Chen, Y.; Zhu, P.; Yin, S.; Su, M.; Ni, Y.; Miao, J.; Wu, W.; Chen, H.; Brouwer, K. L. R.; Liu, C.; Xu, L.; Jia, W.; Lan, K. Drug Metab. Dispos. 2019, 47, 283.
(b) Chen, Y. J.; Zhang, J.; Zhu, P.; Tan, X.; Lin, Q.; Wang, W.; Yin. S.; Gao. L.; Su, M.; Liu, C.; Xu, L.; Jia, W.; Sevrioukova, I. F.; Lan, K. Drug Metab. Dispos. 2019, 47, 574.
(c) Hayes, M. A.; Li, X. Q.; Gronberg, G.; Diczfalusy, U.; Andersson, T. B. Drug Metab. Dispos. 2016, 44, 1480.
(d) Bodin, K.; Lindbom, U.; Diczfalusy, U. Biochim. Biophys. Acta 2005, 1687, 84.
(e) Araya, Z.; Wikvall, K. Biochim. Biophys. Acta 1999, 47, 1438.
(f) Deo, A. K.; Bandiera, S. M. Drug Metab. Dispos. 2009, 37, 1938.
(g) Gustafsson, J.; Andersson, S.; Sjovall, J. Biol. Neonate 1985. 47, 26.
[6] (a) Haslewood, G. A. D. Biochem. J. 1958, 70, 551.
(b) Takeda, K.; Igarashi, K. J. Biochem. 1959, 46, 1313.
(c) Ratliff, R. L.; Matschiner, J. T.; Doisy, E. A.; Hsia, J. S. L.; Thayer, S. A.; Elliott, W. H. J. Biol. Chem. 1961, 236, 685.
[7] Iida, T.; Tamaru, T.; Chang, F.C.; Goto, J.; Nambara, T. J. Lipid Res. 1991, 32, 649.
[8] (a) Fieser, T. L.; Rajagopalan, S. J. Am. Chem. Soc. 1949, 71, 3935.
(b) Ibrahim-Ouali, M.; Romero, E. Steroids 2013, 78, 651.
[9] Qian, S.; Zhao, G. Synlett 2011, 722.
(b) Vasu, N.; Sinbababu, A. K. J. Org. Chem. 1978, 43, 1978.
(c) Zhou, W.-S.; Wang Z.-Q.; Jiang, B. J. Chem. Soc., Perkin Trans. 1 1990, 1.
(d) Iida, T.; Tamura, T.; Matsumoto, T. Synthesis 1984, 957.
[10] Pellicciari, R.; Gioiello, A.; Macchiarulo, A.; Thomas, C.; Rosatelli, E.; Natalini, B.; Sardella, R.; Pruzanski, M.; Roda, A.; Pastorini, E.; Schoonjans, K.; Auwerx, J. J. Med. Chem. 2009, 52, 7958.
[11] (a) Li, Z.; Deng, G.; Li, Y.-C. Synlett 2008, 3053.
(b) Srikrishna, A.; Viswajanani, R.; Sattigeri, J. A.; Yelamaggad, C. V. Tetrahedron Lett. 1995, 36, 2347.
[12] (a) Tsuji, J.; Minami, I.; Shimizu, I. Synthesis 1986, 623.
(b) Tsuji, J.; Mandai, T. Synthesis 1996, 1.
(c) Waalboer, D. C. J.; Schaapman, M. C.; van Delft, F. L.; Rutjes, F. P. J. T. Angew. Chem., Int. Ed. 2008, 47, 6576.
[13] Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51, 1135.
文章导航

/