研究简报

串联反应合成氟磺酸联苯酚酯

  • 李新民 ,
  • 胡瑞 ,
  • 陈正军 ,
  • 胡庆红 ,
  • 袁泽利
展开
  • 遵义医科大学药学院 贵州遵义 563000

收稿日期: 2020-02-25

  修回日期: 2020-04-26

  网络出版日期: 2020-05-11

基金资助

国家自然科学基金(Nos.81660575,81360471)、贵州省自然科学基金(No.[2018]1187)和贵州省国际合作(No.[2020]4104)资助项目.

Preparation of Biaryl Fluorosulfates by a Tandem Process

  • Li Xinmin ,
  • Hu Rui ,
  • Chen Zhengjun ,
  • Hu Qinghong ,
  • Yuan Zeli
Expand
  • College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000

Received date: 2020-02-25

  Revised date: 2020-04-26

  Online published: 2020-05-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 81660575, 81360471), the Natural Science and Technology Foundation of Guizhou Province (No.[2018]1187), and the International Cooperation Project of Guizhou Province (No.[2020]4104).

摘要

发展了一个以溴代苯酚为原料通过串联反应制备氟磺酸联苯酚酯的反应体系.该体系以钯碳为催化剂,无水碳酸钾为碱,乙醇水溶液为溶剂,室温下进行Suzuki反应后,通入硫酰氟气体,最终得到氟磺酸联苯酚酯.反应过程中无需分离中间体,无需加入有机膦配体及氮气保护反应,操作简便,反应条件温和,官能团底物兼容性好,产品分离收率最高达92.6%;此外,钯碳催化剂可回收使用三次几乎不失去活性.

本文引用格式

李新民 , 胡瑞 , 陈正军 , 胡庆红 , 袁泽利 . 串联反应合成氟磺酸联苯酚酯[J]. 有机化学, 2020 , 40(7) : 2135 -2141 . DOI: 10.6023/cjoc202002034

Abstract

The one-pot tandem protocol for the preparation of biaryl fluorosulfates from bromo phenols was developed. Using Pd/C as catalyst, K2CO3 as base and aqueous ethanol as solvent, the Suzuki reaction was carried out at room temperature, then SO2F2 gas was added to the mixture to afford biaryl fluorosulfates product. The intermediate was not isolated, and phosphine ligand and nitrogen protection were not required during the reaction, which made the protocol more convenient to operate. The one-pot protocol could tolerate a range of functional groups and provided a highest product yield up to 97.2% at room temperature. Furthermore, Pd/C catalyst could be recycled and reused three times without significant loss of catalytic activity

参考文献

[1] Liu, Z.; Li, J.; Li, S.; Li, G.; Sharpless, K. B.; Wu, P. J. Am. Chem. Soc. 2018, 140, 2919.
[2] (a) Revathi, L.; Ravindar, L.; Leng, J.; Rakesh, K. P.; Qin, H.-L. Asian J. Org. Chem. 2018, 7, 662.
(b) Ravindar, L.; Bukhari, S.; Rakesh, K.; Manukumar, H.; Vivek, H.; Mallesha, N.; Xie, Z. Z.; Qin, H. L. Bioorg. Chem. 2018, 81, 107.
[3] Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2014, 53, 9430.
[4] Veryser, C.; Demaerel, J.; Bieliuunas, V.; Gilles, P.; De Borggraeve, W. M. Org. Lett. 2017, 19, 5244.
[5] Zhou, H.; Mukherjee, P.; Liu, R.; Evrard, E.; Wang, D.; Humphrey, J. M.; Butler, T. W.; Hoth, L. R.; Sperry, J. B.; Sakata, S. K.; Helal, C. J.; Am Ende, C. W. Org. Lett. 2018, 20, 812.
[6] Guo, T.; Meng, G.; Zhan, X.; Yang, Q.; Ma, T.; Xu, L.; Sharpless, K. B.; Dong, J. Angew. Chem., Int. Ed. 2018, 57, 2605.
[7] (a) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Chem. Rev. 2018, 118, 2249.
(b) Lei, L.; Li, C.; Mo, D. Chin. J. Org. Chem. 2019, 39, 2989(in Chinese). (雷禄, 李承璟, 莫冬亮, 有机化学, 2019, 39, 2989.)
[8] (a) Li, H.; Zhao, L.; Liu, Y.; Zhang, X.; Li, W.; Jing, L.; Huang, J.; Wang, W. Chin. J. Org. Chem. 2019, 39, 3207(in Chinese). (李恒超, 赵玲, 刘燕, 张霞, 李王兵, 敬林海, 黄锦, 汪伟, 有机化学, 2019, 39, 3207.)
(b) Hooshmand, S. E.; Heidari, B.; Sedghi, R.; Varma, R. S. Green Chem. 2019, 21, 381.
[9] (a) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
(b) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
[10] (a) Hirakawa, T.; Uramoto, Y.; Mimura, D.; Takeda, A.; Yanagi- sawa, S.; Ikeda, T.; Inagaki, K.; Morikawa, Y. J. Phys. Chem. B 2017, 121, 164.
(b) Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
(c) Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2011, 133, 2116.
(d) Amatore, C.; Duc, G. L.; Jutand, A. Chem.-Eur. J. 2013, 19, 10082.
[11] (a) Fu, L.; Cao, X.; Wan, J.;Liu, Y. Chin. J. Chem. 2020, 38, 254.
(b) Deraedt, C.; Astruc, D. Acc. Chem. Res. 2014, 47, 494.
[12] (a) Peng, L.; Hu, Z.; Tang, Z.; Jiao, Y.; Xu, X. Chin. Chem. Lett. 2019, 30, 1481.
(b) Xiong, J.; Zhong, G.; Zou, L.; Liu, Y. ChemistrySelect 2018, 3, 8291.
(c) Chen, X.; Hu, C.; Wan, J. P.; Liu, Y. Tetrahedron Lett. 2016, 57, 5116.
(d) Buchspies, J.; Szostak, M. Catalysts 2019, 9, 53.
[13] (a) Campeau, L. C.;Hazari, N. Organometallics 2019, 38, 3.
(b) Liu, C.; Li, X. Chem. Rec. 2016, 16, 84.
[14] Liu, C.; Liu, C.; Li, X. M.; Gao, Z. M.; Jin, Z. L. Chin. Chem. Lett. 2016, 5, 631.
[15] Ma, C.; Zhao, C. Q.; Xu, X. T.; Li, Z. M.; Wang, X. Y.; Zhang, K.; Mei, T. S. Org. Lett. 2019, 21, 2464.
[16] Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R. D. J.; Jansma, M. J.; Bland, D. C.;Sanford, M. S. J. Am. Chem. Soc. 2017, 139, 1452.
[17] Li, X.; Feng, F.; Ren, C.; Teng, Y.; Hu, Q.;Yuan, Z. Synlett 2019, 30, 2131.
文章导航

/