研究论文

荧光增强型次氯酸根传感器及其在细胞成像与自来水检测中的应用

  • 程晓红 ,
  • 李爽 ,
  • 汪竞阳 ,
  • 李望南
展开
  • a 湖北文理学院 低维光电材料与器件湖北省重点实验室 湖北襄阳 441053;
    b 湖北航天化学技术研究所 湖北襄阳 441003

收稿日期: 2020-03-13

  修回日期: 2020-04-12

  网络出版日期: 2020-05-11

基金资助

湖北省自然科学基金(No.2018CFB454)、湖北文理学院学科开放基金(No.XK2020042)、湖北文理学院教师科研能力培育基金(No.2020kypyfy031)资助项目.

“Turn-On” Fluorescent Probe for Hypochlorite: Successful Bioimaging and Real Application in Tap Water

  • Cheng Xiaohong ,
  • Li Shuang ,
  • Wang Jingyang ,
  • Li Wangnan
Expand
  • a Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053;
    b Hubei Institute of Aerospace Chemical Technology, Xiangyang, Hubei 441003

Received date: 2020-03-13

  Revised date: 2020-04-12

  Online published: 2020-05-11

Supported by

Project supported by the Natural Science Foundation of Hubei Province (No. 2018CFB454), the Project of Hubei University of Arts and Science (No. XK2020042) and the Teachers' Scientific Ability Cultivation Foundation of Hubei University of Arts and Science (No. 2020kypyfy031).

摘要

报道了两个基于香豆素的荧光探针C1C2,对次氯酸根均表现出快速的荧光增强响应.尤其是,在化合物C2的溶液中加入次氯酸根后,溶液的荧光发射强度增大了85倍,对次氯酸根的检出限低达1.8×10-7 mol/L.利用次氯酸根独特的氧化性,化合物C2可实现对次氯酸根的高选择性识别,对其他阴离子及氧化物则几乎无响应.重要的是,化合物C2可穿透细胞膜,用于HeLa细胞中次氯酸根的荧光成像.此外,探针C2还可用于自来水样中次氯酸根的检测.

本文引用格式

程晓红 , 李爽 , 汪竞阳 , 李望南 . 荧光增强型次氯酸根传感器及其在细胞成像与自来水检测中的应用[J]. 有机化学, 2020 , 40(7) : 1941 -1947 . DOI: 10.6023/cjoc202003034

Abstract

Taking advantage of the special oxidation property of hypochlorite, two novel coumarin-type fluorescent probes C1 and C2 were synthesized for ClO- detection. Both probes could detect ClO- anions in aqueous solution efficiently with rapid switching-on fluorescent methods. Especially, probe C2 displayed dramatic enhancement in fluorescence emission spectra with the detection limit of 1.8×10-7 mol/L. In addition to its high selectivity for ClO- rather than other common anions and reactive oxygen species, C2 was successfully applied to the bioimaging in HeLa cells with ‘turn-on’ fluorescent methods. Moreover, probe C2 could be used for the analysis of ClO- levels in tap water and potentially in environmental samples.

参考文献

[1] (a) Sugiyama, S.; Kugiyama, K.; Aikawa, M.; Nakamura, S.; Ogawa, H.; Libby, P. Thromb. Vasc. Biol. 2004, 24, 1309.
(b) Pattison, D. I.; Davies, M. J. Chem. Res. Toxicol. 2001, 14, 1453.
(c) Steinbeck, M. J.; Nesti, L. J.; Sharkey, P. F.; Parvizi, J. J. Orthop. Res. 2007, 25, 1128.
(d) Aokl, T.; Munemorl, M. Anal. Chem. 1983, 55, 209.
[2] (a) Cui, K.; Zhang, D. Q.; Zhang, G. X.; Zhu, D. B. Tetrahedron Lett. 2010, 51, 6052.
(b) Hwang, J.; Choi, M. G.; Bae, J.; Chang, S.-K. Org. Biomol. Chem. 2011, 9, 7011.
(c) Kim, T.-Ⅱ.; Park, S.; Choi, Y.; Kim, Y. Chem.-Asian J. 2011, 6, 1358.
(d) Li, G.; Ji, D. D.; Zhang, S. M.; Li, J. M.; Li, C.; Qiao, R. Z. Sens. Actuators, B 2017, 252, 127.
(e) Pang, L. F.; Zhou, Y. M.; Gao, W. L.; Song, H. H.; Wang, X.; Wang, Y. RSC Adv. 2016, 6, 105795.
(f) Zhang, P.; Wang, Y.; Chen, L.; Yin, Y. B. Microchim. Acta 2017, 184, 3781.
[3] (a) Zhang, R.; Song, B.; Yuan, J. L. Trends Anal. Chem. 2018, 99, 1.
(b) Liu, C.; Jiao, X. J.; He, S.; Zhao, L. C.; Zeng, X. S. Talanta 2017, 174, 234.
(c) Liu, S. R.; Wu, S. P. Org. Lett. 2013, 15, 878.
(d) Manjare, S. T.; Kim, J.; Lee, Y.; Churchill, D. G. Org. Lett. 2014, 16, 520.
(e) Qu, Z. J.; Ding, J. X.; Zhao, M. Y.; Li, P. J. Photochem. Photobiol. A 2015, 299, 1.
(f) Zhang, Y. R.; Zhao, Z. M.; Miao, J. Y.; Zhao, B. X. Sens. Actuators, B 2016, 229, 408.
(g) Zhang, Z.; Zheng, Y.; Hang, W.; Yan, X.; Zhao, Y. Talanta 2011, 85, 779.
(h) Shi, L.; Yang S.; Hong, H. J.; Li, Y.; Yu, H. J.; Shao, G.; Zhang, K.; Gong, S. Z. Anal. Chim. Acta 2020, 1094, 122.
(i) Shi, L.; Yu, H. J.; Zeng, X. Q.; Yang, S.; Gong, S. Z.; Xiang, H.; Zhang K.; Shao G. New J. Chem. 2020, 44, 6232. (j) Wei, H. Q.; Zeng, R. J.; Wang, S. L.; Zhang, C. H.; Chen, S.; Zhang, P. S.; Chen, J. Mater. Chem. Front. 2020, 4, 862.
(k) Ren, J. Y.; Zhang, P. S.; Liu, H.; Zhang, C. H.; Gao, Y.; Cui, J. X.; Chen, J. Sens. Actuators, B 2020, 304, 127299.
(l) Zhang, P. S.; Wang, H.; Zhang, D.; Zeng, X. Y.; Zeng, R. J.; Xiao, L. H.; Tao, H. W.; Long, Y. F.; Yi, P. G.; Chen, J. Sens. Actuators, B 2018, 255, 2223.
(m) Zhang, P. S.; Wang, H.; Hong, Y. X.; Yu, M. L.; Zeng, R. J.; Long, Y. F.; Chen, J. Biosens. Bioelectron. 2017, 99, 318.
(n) Huang, Y.; Zhang, P. S.; Gao, M.; Zeng, F.; Qin, A. J.; Wu, S. Z.; Tang, B. Z. Chem. Commun. 2016, 52, 7288.
[4] (a) Wang, J.; Long, L.; Xie, D.; Song, X. Sens. Actuators, B 2013, 177, 27.
(b) Wang, L.; Li, W. X.; Zhi, W. J.; Ye, D. D.; Wang, Y.; Ni, L.; Bao, X. Dyes Pigm. 2017, 147, 357.
(c) Wang, J.; Hu, L. J.; Shen, J.; Jiang, J. Q.; Yu, K. Y., Sun, R. G. Chin. J. Org. Chem. 2018, 38, 760(in Chinese). (王军, 虎良军, 申婧, 姜吉泉, 郁科勇, 孙荣国, 有机化学, 2018, 38, 760.)
(d) Dong, X. B.; Zhang, G. X.; Shi, J. B.; Wang, Y. C.; Wang, M.; Peng, Q.; Zhang, D. Q. Chem. Commun. 2017, 53, 11654.
(e) Acharyya, S.; Gharami, S.; Patra, L.; Mondal, T. K. J. Fluoresc. 2017, 27, 2051.
(f) Yang, T.; Guo, Z.; Shao, A.; Zhao, P.; Zhu, W. Chin. J. Appl. Chem. 2016, 33, 397(in Chinese). (杨婷婷, 郭志前, 邵安东, 赵平, 朱为宏, 应用化学, 2016, 33, 397.)
(g) Hou, S. H.; Qu, Z. G.; Zhong, K. L.; Bian, Y. J.; Tang, L. J. Chin. J. Org. Chem. 2016, 36, 768(in Chinese). (侯淑华, 曲忠国, 钟克利, 边延江, 汤立军, 有机化学, 2016, 36, 768.)
(h) Wang, W. L.; Yan, Y. L.; Wang, Q. M. Chem. Lett. 2017, 46, 1605.
(i) Prabhu, J.; Velmurugan, K.; Zhang, Q.; Radhakrishnan, S.; Tang, L. J.; Nandhakumar, R. J. Photochem. Photobiol. A 2017, 337, 6. (j) Zhang, M.; Xiao, H. F.; Han, Z. X.; Yang, L. Q.; Wu, X. Y. Chin. J. Org. Chem. 2018, 38, 926(in Chinese). (张敏, 肖慧丰, 韩志湘, 仰榴青, 吴向阳, 有机化学, 2018, 38, 926.)
(k) Liu, Z.; Peng, C. N.; Wang, Y.; Pei, M. S.; Zhang, G. Y. Org. Biomol. Chem. 2016, 14, 4260.
(l) Torawane, P.; Tayade, K.; Bothra, S.; Sahoo, S. K.; Singh, N.; Borse, A.; Kuwar, A. Sens. Actuators, B 2016, 222, 562.
[5] (a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 37, 1740.
(b) Chen, J. W.; Xie, Z. L.; Lam, J. W. Y.; Law, C. C. W.; Tang, B. Z. Macromolecules 2003, 36, 1108.
(c) Wei, B.; Li, W. Z.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. J. Am. Chem. Soc. 2017, 139, 5075.
(d) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Chem. Mater. 2003, 15, 1535.
(e) Zhao, Z.; Chen, S.; Lam, J. W. Y.; Jim, C. K. W.; Chan, C. Y. K.; Wang, Z.; Lu, P.; Deng, C.; Kwok, H.; Ma, Y.; Tang, B. Z. J. Phys. Chem. C 2010, 114, 7963.
[6] Zeng, Q.; Li, Z.; Dong, Y. Q.; Di, C. A.; Qin, A. J.; Hong, Y. N.; Ji, L.; Zhu, Z. C.; Jim Cathy, K. W.; Yu, G.; Li, Q. Q.; Li, Z. A.; Liu, Y. Q.; Qin, J. G.; Tang, B. Z. Chem. Commun. 2007, 43, 70.
[7] Erdemir, S.; Kocyigit, O.; Karakurt, S. Sens. Actuat., B 2015, 220, 381.
[8] Yuan, L.; Lin, W. Y.; Song, J. Z.; Yang, Y. T. Chem. Commun. 2011, 47, 12691.
[9] Chen, G.; Song, F.; Wang, J.; Yang, Z.; Sun, S.; Fan, J.; Qiang, X.; Wang, X.; Dou B.; Peng, X. J. Chem. Commun. 2012, 48, 2949.
[10] Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.
文章导航

/