综述与进展

石墨烯共价修饰中的有机反应

  • 郝冰洁 ,
  • 宋涛 ,
  • 黄晓宇 ,
  • 叶茂 ,
  • 钱文昊
展开
  • a 上海市徐汇区牙病防治所 上海 200032;
    b 上海科技大学物质科学与技术学院 上海 201210;
    c 中国科学院上海有机化学研究所 上海 200032

收稿日期: 2020-04-14

  修回日期: 2020-05-04

  网络出版日期: 2020-05-11

基金资助

国家自然科学基金(No.51773222)、上海市自然科学基金(No.20ZR1452200)、上海市徐汇区科学技术委员会(No.SHXH201613)、上海市徐汇区医学尖峰学科(No.SHXH201706)、上海市医学领军人才(No.2019LJ27)和上海市医学重点专科(No.ZK2019B12)资助项目.

Organic Reactions in Covalent Functionalization of Graphene

  • Hao Bingjie ,
  • Song Tao ,
  • Huang Xiaoyu ,
  • Ye Mao ,
  • Qian Wenhao
Expand
  • a Department of Stomatology, Shanghai Xuhui District Dental Center, Shanghai 200032;
    b Shanghaitech University, School of Physical Science and Technology, Shanghai 201210;
    c Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032

Received date: 2020-04-14

  Revised date: 2020-05-04

  Online published: 2020-05-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 51773222), the Shanghai Scientific and Technological Innovation Project (No. 20ZR1452200), the Scientific Research Project of Science and Technology Commission of Xuhui Municipality (No. SHXH201613), the Scientific Research Project of Xuhui Provincial Commission of Health and Family Planning (No. SHXH201706), the Program for Outstanding Medical Academic Leader (No. 2019LJ27) and the Shanghai Medical Key Specialty (No. ZK2019B12).

摘要

石墨烯及氧化石墨烯结构独特,理化性质优异,近年来成为生物、信息、能源等领域极具应用潜力的材料.基于石墨烯类材料,与功能分子、聚合物和纳米粒子等杂化,可得到性能优越的复合材料.除了基于弱相互作用的修饰外,通过有机反应对石墨烯及氧化石墨烯实现共价修饰,可稳定有效地优化其结构、增强其性能、扩展其应用.综述了近年来化学共价修饰石墨烯及氧化石墨烯的酯化反应、酰化反应、Williamson反应和Claisen重排反应、Click化学等途径,阐述了有机化学在共价功能化石墨烯中的应用,并展望了其未来发展趋势.

本文引用格式

郝冰洁 , 宋涛 , 黄晓宇 , 叶茂 , 钱文昊 . 石墨烯共价修饰中的有机反应[J]. 有机化学, 2020 , 40(10) : 3279 -3288 . DOI: 10.6023/cjoc202004022

Abstract

Graphene and graphene oxide possess unique structure and excellent properties, and have become popular potential materials in biology, information, energy and other fields in recent years. The high-quality nanocomposites were obtained by hybridizing graphene-based materials with functional molecules, polymers and nanoparticles. Besides the modification via weak interaction, covalent modification of graphene and graphene oxide via organic reaction can stably and effectively optimize the structure, enhance their performances and extend their applications. In this review, the diverse approaches of chemically covalent modification of graphene and graphene oxide are reviewed via esterification, acylation, Williamson reaction, Eschenmoser-Claisen[3,3] σ rearrangement and click chemistry, and the future development trend is prospected.

参考文献

[1] Peierls, R. E. Ann. Inst. Henri Poincare, Sect. A 1935, 5, 177.
[2] Mermin, N. D. Phys. Rev. 1968, 176, 250.
[3] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Grigorieva, I. V.; Firsov, A. Science 2004, 306, 666.
[4] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
[5] Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192.
[6] Geim, A. K. Science 2009, 324, 1530.
[7] Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906.
[8] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
[9] Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukadaand, M.; Fukuyama, H. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 085421.
[10] Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.
[11] Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E H.; First, P. N.; de Heer, W. A. J. Phys. Chem. B 2004, 108, 19912.
[12] Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nat. Mater. 2007, 6, 652.
[13] Li, Z. Y.; Zhang, W. H.; Luo, Y.; Yang, J. L.; Hou, J. G. J. Am. Chem. Soc. 2009, 131, 6320.
[14] Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Carbon 2006, 44, 3342.
[15] Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H. Carbon 2005, 43, 641.
[16] Szabo, T.; Tombacz, E.; Illes, E.; Dekany, I. Carbon 2006, 44, 537.
[17] He, H., Riedl, T., Lerf, A.; Klinowski, J. J. Phys. Chem. 1996, 100, 19954.
[18] Misra, S. K.; Kondaiah, P.; Bhattacharya, S.; Rao, C. N. R. Small 2012, 8,131.
[19] Song, Y.; Wei, W.; Qu, X. Adv. Mater. 2011, 23, 4215.
[20] Li, J. L.; Bao, H. C.; Hou, X. L.; Sun, X.; Wang, G.; Gu, M. Angew. Chem., Int. Ed. 2012, 51, 1830.
[21] Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Electro- analysis 2010, 22, 1027.
[22] Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Chem. Mater. 2006, 18, 2740.
[23] Lerf, A.; He, H.; Riedl, T.; Forster, M.; Klinowski, J. Solid State Ionics 1997, 101~103, 857.
[24] Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. Angew. Chem., Int. Ed. 2010, 49, 2154.
[25] David, L.; Bhandavat, R.; Singh, G. ACS Nano 2014, 8, 1759.
[26] Shamsipur, M.; Molaei, K.; Molaabasi, F.; Hosseinkhani, S.; Taherpour, A.; Sarparast, M.; Moosavifard, S. E.; Barati, A. ACS Appl. Mater. Interfaces 2019, 11, 46077.
[27] Cao, Y.; Lai, Z.; Feng, J.; Wu, P. J. Mater. Chem. 2011, 21, 9271.
[28] Xu, Z. Y.; Li, Y. J.; Shi, P.; Wang, B. J.; Huang, X. Y. Chin. J. Org. Chem. 2013, 33, 573(in Chinese). (徐志远, 李永军, 史萍, 王博婵, 黄晓宇, 有机化学, 2013, 33, 573.)
[29] Dai, J.; Lang, M. D. Acta Chem. Sinica 2012, 70, 1237(in Chinese). (戴静, 郎美东, 化学学报, 2012, 70, 1237.)
[30] Xu, Z. Y.; Wang, S.; Li, Y. J.; Wang, M. W.; Shi, P.; Huang, X. Y. ACS Appl. Mater. Interfaces 2014, 6, 17268.
[31] Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Ruoff, R. S. J. Mater. Chem. 2006,16, 155.
[32] Bai, H.; Li, C.; Wang, X.; Shi, G. Chem. Commun. 2010, 46, 2376.
[33] Yoon, S.; In, I. J. Mater. Sci. 2011, 46, 1316.
[34] Cano, M.; Khan, U.; Sainsbury, T.; Neill, A. O.; Wang, Z.; McGovern, I. T.; Maser, W. K.; Benito, A. M.; Coleman, J. N. Carbon 2013, 52, 363.
[35] Vacchi, I. A.; Raya, J.; Bianco, A.; Ménard-Moyon, C. 2D Mater. 2018, 5, 035037.
[36] Ji, P.; Zhang, W.; Ai, S.; Zhang, Y.; Liu, J.; Liu, J.; He, P.; Li, Y. Nanotechnology 2019, 30, 115701.
[37] Sydlik, S. A.; Swager, T. M. Adv. Funct. Mater. 2013, 23, 1873.
[38] Vacchi, I. A.; Spinato, C.; Raya, J.; Bianco, A.; Ménard-Moyon, C. Nanoscale 2016, 8, 13714.
[39] Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. ACS Nano 2010, 4, 1949.
[40] Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. Nano Lett. 2009, 9, 3460.
[41] Deng, Y.; Li, Y. J.; Dai, J.; Lang, M. D.; Huang, X. Y. J. Polym. Sci. Part A:Polym. Chem. 2011, 49, 4747.
[42] Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Steriotis, T. A.; Dallas, P.; Stubos, A. K.; Trapalis, C. Chem. Commun. 2010, 46, 1766.
[43] Vadukumpully, S.; Gupta, J.; Zhang, Y.; Xu, C. Q.; Valiyaveettil, S. Nanoscale 2011, 3, 303.
[44] Nemes-Incze, P.; Osváth, Z.; Kamarás, K.; Biro, L. P. Carbon 2008, 46, 1435.
[45] Zhang, X.; Hou, L.; Cnossen, A.; Coleman, A. C.; Ivashenko, O.; Rudolf, P.; van Wees, B. J.; Browne, W. R.; Feringa, B. L. Chem.-Eur. J. 2011, 17, 8957.
[46] Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W. R.; Rudolf, P.; Prato, M. ACS Nano 2010, 4, 3527.
[47] Liu, L. H.; Lerner, M. M.; Yan, M. Nano Lett. 2010, 10, 3754.
[48] Zhong, X.; Jin, J.; Li, S.; Niu, Z.; Hu, W.; Li, R.; Ma, J. Chem. Commun. 2010, 46, 7340.
[49] Loh, K. P.; Bao, Q.; Anga, P. K. Yang, J. X. J. Mater. Chem. 2010, 20, 2277.
[50] Salavagione, H. J.; Martínez, G.; Ellis, G. Macromol. Rapid. Commun. 2011, 32, 1771.
[51] Liu, Y.; Zhou, J.; Zhang, X.; Liu, Z.; Wan, X.; Tian, J.; Wang, T.; Chen, Y. Carbon 2009, 47, 3113.
[52] Yu, D.; Yang, Y.; Durstock, M.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 5633.
[53] Collins, W. R.; Lewandowski, W.; Schmois, E.; Walish, J.; Swager, T. M. Angew. Chem., Int. Ed. 2011, 50, 8848.
[54] Palaganas, J. O.; Palaganas, N. B.; Ramos, L. J. I.; David, C. P. C. ACS Appl. Mater. Interfaces 2019, 11, 46034.
[55] Yang, H.; Shan, C.; Li, F.; Han, D.; Zhang, Q.; Niu, L. Chem. Commun. 2009, 26, 3880.
[56] Collins, W. R.; Schmois, E.; Swager, T. M. Chem. Commun. 2011, 47, 8790.
[57] Cao, Y.; Lai, Z.; Feng, J.; Wu, P. J. Mater. Chem. 2011, 21, 9271.
[58] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876.
[59] Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Angew. Chem., Int. Ed. 2010, 49, 10084.
[60] Wang, D.; Ye, G.; Wang, X.; Wang, X. Adv. Mater. 2011, 23, 1122.
[61] Fang, M.; Wang, K.; Lu, H. B.; Yang, Y. L.; Nutt, S. J. Mater. Chem. 2009, 19, 7098.
[62] Lee, S. H.; Dreyer, D. R.; An, J.; Velamakanni, A.; Piner, R. D.; Park, S.; Zhu, Y.; Kim, S. O.; Bielawski, C. W.; Ruoff, R. S. Macromol. Rapid. Commun. 2010, 31, 281.
[63] Liu, Z. Z.; Zhu, S. J.; Li, Y. J.; Li, Y. S.; Shi, P.; Huang, Z.; Huang, X. Y. Polym. Chem. 2015, 6, 311.
[64] Huang, Y.; Qin, Y.; Zhou, Y.; Niu, H.; Yu, Z. Z.; Dong, J. Y. Chem. Mater. 2010, 22, 4096.
[65] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 44, 2004.
[66] Becer, C. R.; Hoogenboom, R.; Schubert, U. S. Angew. Chem., Int. Ed. 2009, 48, 4900.
[67] Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J. M.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 43, 3928.
[68] Helms. B.; Mynar, J. L.; Hawker, C. J.; Frechet, J. M. J. Am. Chem. Soc. 2004, 126, 15020.
[69] John, E.; Moses, A.; Moorhouse, D. Chem. Rev. 2007, 36, 1249.
[70] Zhang, T.; Zheng, C. H.; Ding, X. B.; Peng, Y. X. Prog. Chem. 2008, 20, 1090 (in Chinese). (张涛, 郑朝辉, 成煦, 丁小斌, 彭宇行, 化学进展, 2008, 20, 1090.)
[71] He, H.; Gao, C. Chem. Mater. 2010, 22, 5054.
[72] Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. S Small 2009, 5, 82.
[73] Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L. Adv. Funct. Mater. 2011, 21, 2754.
[74] Imani, R.; Prakash, S.; Vali, H.; Faghihi, S. Biomater. Sci. 2018, 6, 1636.
[75] Guo, S.; Nishina, Y.; Bianco, A.; Cécilia, M.-M. Angew. Chem., Int. Ed. 2020, 59, 1542.
文章导航

/