综述与进展

多电荷环糊精的超分子组装

  • 张依 ,
  • 刘育
展开
  • 南开大学化学系 元素有机化学国家重点实验室 天津 300071

收稿日期: 2020-04-25

  修回日期: 2020-04-29

  网络出版日期: 2020-05-11

基金资助

国家自然科学基金(Nos.21772099,21861132001)资助项目.

Supramolecular Assemblies of Multi-Charged Cyclodextrins

  • Zhang Yi ,
  • Liu Yu
Expand
  • State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071

Received date: 2020-04-25

  Revised date: 2020-04-29

  Online published: 2020-05-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772099, 21861132001).

摘要

多电荷环糊精作为一类具有优异的水溶性、低生物毒性和高电荷密度的大环主体,可与有机、无机和生物分子通过疏水的空腔和静电相互作用等多种协同作用力构筑具有稳定拓扑形貌、功能多样性和刺激响应性的智能超分子组装体而被广泛研究.综述了近年来以正/负电荷及两亲性多电荷环糊精作为主体构筑的具有pH、光、酶、氧化还原、磁和多重刺激响应的智能超分子组装体以及其在药物传递、控制释放和传感检测等领域应用的最新研究进展,并对多电荷环糊精智能超分子组装体所面临的挑战和未来的发展进行了探讨.

本文引用格式

张依 , 刘育 . 多电荷环糊精的超分子组装[J]. 有机化学, 2020 , 40(11) : 3802 -3811 . DOI: 10.6023/cjoc202004040

Abstract

As a class of macrocyclic host with excellent water solubility, low biotoxicity and high charge density, multi-charged cyclodextrins have been extensively studied because they can interact with organic/inorganic/biological molecules through multiple synergistic forces such as the hydrophobic cavities and electrostatic interactions to construct the smart supramolecular assemblies with stable topology, functional diversity and stimulus responsiveness. The latest research progress of pH-, photo-, enzyme-, redox-, magnetic-and multi-stimulus responsive smart supramolecular assemblies, which are constructed by typical positively/negatively charged and amphiphilic multi-charged cyclodextrins including their application in the fields of drug delivery, controlled release and sensory detection is introduced, and the challenges and future developments of multi-charged cyclodextrin smart supramolecular assemblies are discussed.

参考文献

[1] (a) Crini, G. Chem. Rev. 2014, 114, 10940.
(b) Chen, Y.; Zhang, Y. M.; Liu, Y. Chem. Commun. 2010, 46, 5622.
(c) Lai, W.-F.; Rogach, A. L.; Wong, W.-T. Chem. Soc. Rev. 2017, 46, 6379.
(d) Prochowicz, D.; Kornowicz, A.; Lewiński, J. Chem. Rev. 2017, 117, 13461.
(e) Chen, G.; Jiang, M. Chem. Soc. Rev. 2011, 40, 2254.
(f) Chen, H.; Liu, X.; Dou, Y.; He, B.; Liu, L.; Wei, Z.; Li, J.; Wang, C.; Mao, C.; Zhang, J.; Wang, G. Biomaterials 2013, 34, 4159.
(g) Schmidt, B.; Barner-Kowollik, C. Angew. Chem., Int. Ed. 2017, 56, 8350.
(h) Kolesnichenko, I. V.; Anslyn, E. V. Chem. Soc. Rev. 2017, 46, 2385.
(i) Chen, Y.; Liu, Y. Chem. Soc. Rev. 2010, 39, 495.
(j) Zhang, Y.; Liang, L.; Chen, Y.; Chen, X. M.; Liu, Y. Soft Matter 2018, 15, 73.
(k) Yu, Q.; Zhang, Y.-M.; Liu, Y.-H.; Xu, X.; Liu, Y. Sci. Adv. 2018, 4, eaat2297.
(l) Pinalli, R.; Pedrini, A.; Dalcanale, E. Chem. Soc. Rev. 2018, 47, 7006.
(m) Zhang, W.; Deng, W. Chin. J. Org. Chem. 2018, 38, 3002(in Chinese). (张薇, 邓维, 有机化学, 2018, 38, 3002.)
(n) Chen, Y. Q.; Gui, X.; Duan, Z. B.; Zhu, L. J.; Xiang, Y. Z.; Xia, D. H. Chin. J. Org. Chem. 2019, 39, 1284(in Chinese). (陈雅琪, 桂鑫, 段尊斌, 朱丽君, 项玉芝, 夏道宏, 有机化学, 2019, 39, 1284.)
(o) Qie, S. Y.; Hao, Y.; Liu, Z. J.; Wang, J.; Xi, J. N. Acta Chim. Sinica 2020, 78, 232(in Chinese). (郄淑燕, 郝莹, 刘宗建, 王锦, 席家宁, 化学学报, 2020, 78, 232.)
[2] Eliseev, A. V.; Schneider, H.-J. J. Am. Chem. Soc. 1994, 116, 6081.
[3] (a) Li, Z.; Zhang, Y.-M.; Wang, H.-Y.; Li, H.; Liu, Y. Macromolecules 2017, 50, 1141.
(b) Zhang, Y.; Chen, Y.; Li, J.; Liang, L.; Liu, Y. Acta Chim. Sinica 2018, 76, 622(in Chinese). (张依, 陈湧, 李晶晶, 梁璐, 刘育, 化学学报, 2018, 76, 622.)
(c) Niu, J.; Chen, Y.; Liu, Y. Chin. J. Org. Chem. 2019, 39, 151(in Chinese). (牛杰, 陈湧, 刘育, 有机化学, 2019, 39, 151.)
[4] (a) Eliseev, A. V.; Schneider, H.-J. Angew. Chem., Int. Ed. 1993, 32, 1331.
(b) Steffen, A.; Thiele, C.; Tietze, S.; Strassnig, C.; Kämper, A.; Lengauer, T.; Wenz, G.; Apostolakis, J. Chem.-Eur. J. 2007, 13, 6801.
[5] (a) Zhang, Y. M.; Liu, Y. H.; Liu, Y. Adv. Mater. 2020, 32, e1806158.
(b) Liao, R.; Lv, P.; Wang, Q.; Zheng, J.; Feng, B.; Yang, B. Biomater. Sci. 2017, 5, 1736.
(c) Yao, X.; Mu, J.; Zeng, L.; Lin, J.; Nie, Z.; Jiang, X.; Huang, P. Mater. Horiz. 2019, 6, 846.
[6] (a) Bom, A.; Bradley, M.; Cameron, K.; Clark, J. K.; Van Egmond, J.; Feilden, H.; Maclean, E. J.; Muir, A. W.; Palin, R.; Rees, D. C.; Zhang, M.-Q. Angew. Chem., Int. Ed. 2002, 41, 265.
(b) Adam, J. M.; Bennett, D. J.; Bom, A.; Clark, J. K.; Feilden, H.; Hutchinson, E. J.; Palin, R.; Prosser, A.; Rees, D. C.; Rosair, G. M.; Stevenson, D.; Tarver, G. J.; Zhang, M.-Q. J. Med. Chem. 2002, 45, 1806.
[7] Jones, S. T.; Cagno, V.; Janeček, M.; Ortiz, D.; Gasilova, N.; Piret, J.; Gasbarri, M.; Constant, D. A.; Han, Y.; Vuković, L.; Král, P.; Kaiser, L.; Huang, S.; Constant, S.; Kirkegaard, K.; Boivin, G.; Stellacci, F.; Tapparel, C. Sci. Adv. 2020, 6, eaax9318.
[8] Sun, H.-L.; Zhang, Y.-M.; Chen, Y.; Liu, Y. Sci. Rep. 2016, 6, 27.
[9] Li, J. J.; Chen, Y.; Yu, J.; Cheng, N.; Liu, Y. Adv. Mater. 2017, 29, 1701905.
[10] (a) Shi, R.-J.; Chen, Y.; Hou, X.-F.; Liu, Y. RSC Adv. 2016, 6, 15175.
(b) Zhao, D.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2015, 26, 829.
[11] Díaz-Moscoso, A.; Balbuena, P.; Gómez-García, M.; Ortiz Mellet, C.; Benito, J. M.; Le Gourriérec, L.; Di Giorgio, C.; Vierling, P.; Mazzaglia, A.; Micali, N.; Defaye, J.; García Fernández, J. M. Chem. Commun. 2008, 2001.
[12] Zhao, F.; Yin, H.; Zhang, Z.; Li, J. Biomacromolecules 2013, 14, 476.
[13] Wang, J.; Chen, Y.; Cheng, N.; Feng, L.; Gu, B.-H.; Liu, Y. ACS Appl. Bio Mater. 2019, 2, 5898.
[14] (a) Lu, Y.; De Vries, W. C.; Overeem, N. J.; Duan, X.; Zhang, H.; Zhang, H.; Pang, W.; Ravoo, B. J.; Huskens, J. Angew. Chem., Int. Ed. 2019, 58, 159.
(b) Schibilla, F.; Holthenrich, A.; Song, B.; Linard Matos, A. L.; Grill, D.; Rota Martir, D.; Gerke, V.; Zysman-Colman, E.; Ravoo, B. J. Chem. Sci. 2018, 9, 7822.
(c) Himmelein, S.; Lewe, V.; Stuart, M. C. A.; Ravoo, B. J. Chem. Sci. 2014, 5, 1054.
[15] Ravoo, B. J.; Darcy, R. Angew. Chem., Int. Ed. 2000, 39, 4324.
[16] (a) Mohan Nalluri, S. K.; Bultema, J. B.; Boekema, E. J.; Ravoo, B. J. Chem. Sci. 2011, 2, 2383.
(b) Samanta, A.; Ravoo, B. J. Chem.-Eur. J. 2014, 20, 4966.
(c) Samanta, A.; Stuart, M. C. A.; Ravoo, B. J. J. Am. Chem. Soc. 2012, 134, 19909.
(d) Nalluri, S. K. M.; Bultema, J. B.; Boekema, E. J.; Ravoo, B. J. Chem.-Eur. J. 2011, 17, 10297.
(e) Moratz, J.; Stricker, L.; Engel, S.; Ravoo, B. J. Macromol. Rapid Commun. 2018, 39, 1700256.
[17] Sukegawa, T.; Furuike, T.; Niikura, K.; Yamagishi, A.; Monde, K.; Nishimura, S.-I. Chem. Commun. 2002, 430.
[18] Donohue, R.; Mazzaglia, A.; Ravoo, B. J.; Darcy, R. Chem. Commun. 2002, 2864.
[19] (a) O'mahony, A. M.; Doyle, D.; Darcy, R.; Cryan, J. F.; O'driscoll, C. M. Eur. J. Pharm. Sci. 2012, 47, 896.
(b) Méndez-Ardoy, A.; Guilloteau, N.; Di Giorgio, C.; Vierling, P.; Santoyo-González, F.; Ortiz Mellet, C.; García Fernández, J. M. J. Org. Chem. 2011, 76, 5882.
[20] Li, P. Y.; Chen, Y.; Chen, C. H.; Liu, Y. Chem. Commun. 2019, 55, 11790.
[21] (a) Zan, M.; Li, J.; Luo, S.; Ge, Z. Chem. Commun. 2014, 50, 7824.
(b) Zhao, D.; Yi, X.; Xu, J.; Yuan, G.; Zhuo, R.; Li, F. J. Mater. Chem. B 2017, 5, 2823.
(c) Durmaz, Y. Y.; Lin, Y.-L.; Elsayed, M. E. H. Adv. Funct. Mater. 2013, 23, 3885.
[22] Cheng, J. G.; Yu, H. J.; Chen, Y.; Liu, Y. Bioorg. Med. Chem. 2018, 26, 2287.
[23] Cheng, J.-G.; Zhang, Y.-M.; Liu, Y. ChemNanoMat 2018, 4, 758.
[24] Tardy, B. L.; Tan, S.; Dam, H. H.; Ejima, H.; Blencowe, A.; Qiao, G. G.; Caruso, F. Nanoscale 2016, 8, 15589.
[25] Liang, L.; Chen, Y.; Chen, X.-M.; Zhang, Y.; Liu, Y. Chin. Chem. Lett. 2018, 29, 989.
[26] Chen, X. M.; Chen, Y.; Hou, X. F.; Wu, X.; Gu, B. H.; Liu, Y. ACS Appl. Mater. Interfaces 2018, 10, 24987.
[27] (a) Gayam, S. R.; Venkatesan, P.; Sung, Y.-M.; Sung, S.-Y.; Hu, S.-H.; Hsu, H.-Y.; Wu, S.-P. Nanoscale 2016, 8, 12307.
(b) Lee, J.; Oh, E.-T.; Yoon, H.; Woo Kim, C.; Han, Y.; Song, J.; Jang, H.; Joo Park, H.; Kim, C. Nanoscale 2017, 9, 6901.
(c) Cheng, Y.-J.; Luo, G.-F.; Zhu, J.-Y.; Xu, X.-D.; Zeng, X.; Cheng, D.-B.; Li, Y.-M.; Wu, Y.; Zhang, X.-Z.; Zhuo, R.-X.; He, F. ACS Appl. Mater. Interfaces 2015, 7, 9078.
[28] Hu, P.; Chen, Y.; Li, J. J.; Liu, Y. Chem.-Asian J. 2016, 11, 505.
[29] Hou, X.-F.; Chen, Y.; Liu, Y. Soft Matter 2015, 11, 2488.
[30] Han, X.; Chen, Y.; Sun, H.-L.; Liu, Y. Asian J. Org. Chem. 2018, 7, 870.
[31] Guan, X.; Chen, Y.; Wu, X.; Li, P.; Liu, Y. Chem. Commun. 2019, 55, 953.
[32] (a) Zhao, Q.; Lian, Z.; Gao, X.; Yan, Y.; Huang, J. Langmuir 2016, 32, 11973.
(b) Mandl, G. A.; Rojas-Gutierrez, P. A.; Capobianco, J. A. Chem. Commun. 2018, 54, 5847.
(c) Stricker, L.; Fritz, E.-C.; Peterlechner, M.; Doltsinis, N. L.; Ravoo, B. J. J. Am. Chem. Soc. 2016, 138, 4547.
[33] Zhao, X.; Chen, Y.; Guan, X. R.; Li, P. Y.; Zhou, W. L.; Liu, Y. ChemistrySelect 2019, 4, 13241.
[34] Li, Z.-Y.; Chen, Y.; Wu, H.; Liu, Y. ChemistrySelect 2018, 3, 3203.
[35] Liu, Z.; Qiao, J.; Tian, Y.; Wu, M.; Niu, Z.; Huang, Y. Langmuir 2014, 30, 8938.
[36] Liu, J.; Xu, L.; Jin, Y.; Qi, C.; Li, Q.; Zhang, Y.; Jiang, X.; Wang, G.; Wang, Z.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 14200.
[37] Chen, X.; Qiu, Y. K.; Owh, C.; Loh, X. J.; Wu, Y. L. Nanoscale 2016, 8, 18876.
[38] Wen, Y.; Zhang, Z.; Li, J. Adv. Funct. Mater. 2014, 24, 3874.
[39] (a) Yang, C.; Wang, X.; Li, H.; Goh, S. H.; Li, J. Biomacromolecules 2007, 8, 3365.
(b) Yamashita, A.; Kanda, D.; Katoono, R.; Yui, N.; Ooya, T.; Maruyama, A.; Akita, H.; Kogure, K.; Harashima, H. J. Control. Release 2008, 131, 137.
[40] Ooya, T.; Choi, H. S.; Yamashita, A.; Yui, N.; Sugaya, Y.; Kano, A.; Maruyama, A.; Akita, H.; Ito, R.; Kogure, K.; Harashima, H. J. Am. Chem. Soc. 2006, 128, 3852.
[41] Tamura, A.; Yui, N. Biomaterials 2013, 34, 2480.
[42] Schroeder, T. B. H.; Houghtaling, J.; Wilts, B. D.; Mayer, M. Adv. Mater. 2018, 30, 1705322.
[43] (a) Badruddoza, A. Z. M.; Bhattarai, B.; Suri, R. P. S. ACS Sustainable Chem. Eng. 2017, 5, 9223.
(b) Lu, A.-H.; Salabas, E. L.; Schüth, F. Angew. Chem., Int. Ed. 2007, 46, 1222.
[44] Samanta, A.; Ravoo, B. J. Angew. Chem., Int. Ed. 2014, 53, 12946.
[45] Awasthi, A. A.; Singh, P. K. J. Phys. Chem. B 2017, 121, 6208.
[46] Singh, G.; Singh, P. K. Langmuir 2019, 35, 14628.
[47] Hu, P.; Chen, Y.; Liu, Y. Chem. Commun. 2015, 51, 10839.
文章导航

/