综述与进展

单氟甲基化反应的研究进展

  • 刘颖杰 ,
  • 李晨 ,
  • 孟建萍 ,
  • 宋冬雪 ,
  • 刘冰 ,
  • 许颖
展开
  • 哈尔滨商业大学药学院 哈尔滨 150076

收稿日期: 2020-03-24

  修回日期: 2020-04-25

  网络出版日期: 2020-05-15

基金资助

黑龙江省自然科学基金优秀青年(No.YQ2019B004)、哈尔滨商业大学青年创新人才(No.2016QN056)及哈尔滨商业大学青年后备人才(No.2019CX36)资助项目.

Recent Progress in Monofluoromethylation

  • Liu Yingjie ,
  • Li Chen ,
  • Meng Jianping ,
  • Song Dongxue ,
  • Liu Bing ,
  • Xu Ying
Expand
  • School of Pharmacy, Harbin University of Commerce, Harbin 150076

Received date: 2020-03-24

  Revised date: 2020-04-25

  Online published: 2020-05-15

Supported by

Project supported by the Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province (No. YQ2019B004) and the Youth Innovation Talent Project of Harbin University of Commerce (No. 2016QN056) and the Youth Reserve Talent Program of Harbin University of Commerce (No. 2019CX36).

摘要

有机氟化物在医药、农业化学等领域发挥着不可缺少的作用,其中,氟甲基官能团具有较强的的亲脂性,可以极大地改善药物分子的药代动力学性质.因此,开发各类氟化反应具有重要的价值,尤其向分子中引入单氟甲基在氟化学领域备受关注.针对不同结构分子的单氟甲基化,按照氟甲基试剂分类总结单氟甲基化反应的研究进展,并对部分反应可能的机理进行讨论.

本文引用格式

刘颖杰 , 李晨 , 孟建萍 , 宋冬雪 , 刘冰 , 许颖 . 单氟甲基化反应的研究进展[J]. 有机化学, 2020 , 40(8) : 2322 -2337 . DOI: 10.6023/cjoc202003055

Abstract

Organic fluorides play an indispensable role in medicine, agricultural chemistry and other fields, among them fluoromethyl functional groups have strong lipophilicity, which can greatly improve the pharmacokinetics properties of drug molecules. Therefore, it is of great value to develop various fluorination reactions, especially to introduce monofluoromethyl into molecules in fluorination chemistry. The research progress of the monofluoromethylation of different structural molecules is summarized according to the classification of fluoromethyl reagents, and the possible mechanism of some reactions is discussed.

参考文献

[1] Harpere, D. B.; O'Hagan, D. Nat. Prod. Rep. 1994, 11, 123.
[2] (a) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(b) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(c) Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880.
[3] (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Jeschke, P. ChemBioChem 2004, 5, 590.
[4] (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
[5] Some examples:(a) Wang, J.; Sánchez-Roselló, M.; Aceña, J.; del Pozo, C. L.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
[6] (a) Wong, D. T.; Perry, K. W.; Bymaster, F. P. Nat. Rev. 2005, 4, 764.
(b) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
(c) Wang, J.; Sanchez-Rosello, M.; Acena, J.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[7] Some examples:(a) Kollonitsch, J.; Patchett, A. A.; Marburg, S.; Maycock, A. L.; Perkins, L. M.; Doldouras, G. A.; Duggan, D. E.; Aster, S. D. Nature 1978, 274, 906.
(b) Mckeage, K.; Keam, S. J. Drugs 2009, 69, 1799.
(c) Rojas, R. A.; Paluga, I.; Goldfrad, C. H.; Duggan, M. T.; Barnes, N. J. Asthma 2007, 44, 437.
[8] For selected examples, see:(a) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
(b) Charpentier, J.; Fruh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(c) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(d) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
[9] For selected examples, see:(a) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(b) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
[10] Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.; Zhu, L.; Hu, J. Org. Lett. 2006, 8, 1693.
[11] Ni, C.; Li, Y.; Hu, J. J. Org. Chem. 2006, 71, 6829.
[12] Liu, J.; Li, Y.; Hu, J. J. Org. Chem. 2007, 72, 3119.
[13] Liu, J.; Zhang, L.; Hu, J. Org. Lett. 2008, 10, 5377.
[14] Ni, C.; Zhang, L.; Hu, J. J. Org. Chem. 2009, 74, 3767.
[15] Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew. Chem., Int. Ed. 2006, 45, 4973.
[16] Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru, T. J. Am. Chem. Soc. 2007, 129, 6394.
[17] Prakash, G. K. S.; Chacko, S.; Alconcel, S.; Stewart, T.; Mathew, T.; Olah, G. A. Angew. Chem., Int. Ed. 2007, 46, 4933.
[18] Prakash, G. K. S.; Chacko, S.; Vaghoo, H.; Shao, N.; Gurung, L.; Mathew, T.; Olah, G. A. Org. Lett. 2009, 11, 1127.
[19] Ni, C.; Hu, J.; Tetrahedron Lett. 2009, 50, 7252.
[20] Furukawa, T.; Kawazoe, J.; Zhang, W.; Nishimine, T.; Tokunaga, E.; Matsumoto, T.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 9684.
[21] Matsuzaki, K.; Furukawa, T.; Tokunaga, E.; Matsumoto, T.; Shiro, M.; Shibata, N. Org. Lett. 2013, 15, 3282.
[22] Zhu, L.; Ni, C.; Zhao, Y.; Hu, J. Tetrahedron 2010, 66, 5089.
[23] Furukawa, T.; Goto, Y.; Kawazoe, J.; Tokunaga, E.; Nakamura, S.; Yang, Y.; Du, H.; Kakehi, A.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2010, 49, 1642.
[24] Zhao, Y.; Gao, B.; Ni, C.; Hu, J. Org. Lett. 2012, 14, 6080.
[25] Zhao, Y.; Ni, C.; Jiang, F.; Gao, B.; Shen, X.; Hu, J. ACS Catal. 2013, 3, 631.
[26] Geng, Y.; Liang, A. P.; Gao, X. Y.; Niu, C. S.; Li, J. Y.; Zou, D. P.; Wu, Y. S.; Wu, Y. J. J. Org. Chem. 2017, 82, 8604.
[27] Parisi, G.; Colella, M.; Monticelli, S.; Romanazzi, G.; Holzer, W.; Langer, T.; Degennaro, L.; Pace, V.; Luisi, R. J. Am. Chem. Soc. 2017, 139, 13648.
[28] Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y; Baran, P. Nature 2012, 492, 95.
[29] Tang, X.; Thomoson, C. S.; Dolbier Jr., W. R. Org. Lett. 2014, 16, 4594.
[30] Tang, X.; Thomoson, C. S.; Dolbier Jr., W. R. Angew. Chem., Int. Ed. 2015, 54, 4246.
[31] He, Z.; Tan, P.; Ni, C.; Hu, J. Org. Lett. 2015, 17, 1838.
[32] Fu, W.-J.; Sun, Y.-N.; Li, X.-Y. Synth. Commun. 2019, 169, 7452.
[33] (a) Li, Y.; Lu, Y.; Qiu, G.; Ding, Q. Org. Lett. 2014, 16, 4240.
(b) Moskvina, V. S.; Khily, V. P. Chem. Heterocycl. Comp. 2019, 55, 300.
(c) Zhang, X.; Li, Y.; Hao, X.; Jin, K.; Zhang, R.; Duan, C. Tetrahedron 2018, 74, 7358.
(d) Chen, L.; Wu, L.; Duan, W.; Wang, T.; Li, L.; Zhang, K.; Zhu, J.; Peng, Z.; Xiong, F. J. Org. Chem. 2018, 83, 8607.
(e) Bu, M.-J.; Lu, G.-P.; Cai, C. Catal. Commun. 2018, 114, 70.
(f) Ni, S.-Y.; Zhou, J.; Mei, H.-B.; Han, J.-L. Tetrahedron Lett. 2018, 59, 1309.
[34] (a) Deng, X.; Chao, H.; Chen, C.; Zhou, H.; Yu, L. Sci. Bull. 2019, 64, 1280.
(b) Yu, L.; Huang, X. Synlett 2006, 2136.
(c) Yu, L.; Huang, X. Synlett 2007, 1371.
(d) Liu, M.; Li, Y.; Yu, L.; Xu, Q.; Jiang, X. Sci. China:Chem. 2018, 61, 294.
[35] Zessin, J.; Eskola, O.; Brust, P.; Bergman, J.; Steinbach, J.; Lehikoinen, P.; Solin, O.; Johannsen, B. Nucl. Med. Biol. 2001, 28, 857.
[36] Zhang, M. R.; Maeda, J.; Furutsuka, K.; Yoshida, Y.; Ogawa, M.; Suhara, T.; Suzuki, K. Bioorg. Med. Chem. Lett. 2003, 13, 201.
[37] Zhang, M. R.; Ogawa, M.; Furutsuka, K.; Yoshida, Y.; Suzuki, K. J. Fluorine Chem. 2004, 125, 1879.
[38] Zhang, W.; Zhu, L.; Hu, J. Tetrahedron 2007, 63, 10569.
[39] Doi, H.; Ban, I.; Nonoyama, A.; Sumi, K.; Kuang, C.; Hosoya, T.; Tsukada, H.; Suzuki, M. Chem.-Eur. J. 2009, 15, 4165.
[40] Hu, B.; Gao, L.; Li, C.; Hu, J. Org. Lett. 2015, 17, 3086.
[41] An, L.; Xiao, Y.-L.; Min, Q.-Q.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 9079.
[42] Yin, H.; Sheng, J.; Zhang, K.-F.; Zhang, Z.-Q.; Bian, K.-J.; Wang, X.-S. Chem. Commun. 2019, 55, 7635.
[43] (a) Doi, H.; Ban, I.; Nonoyama, A; Sumi, K.; Kuang, C.; Hosoya, T.; Tsukada, H.; Suzuki, M. J. Chem.-Eur. 2009, 15, 4165.
(b) Hu, J.; Gao, B.; Li, L.; Ni, C. Org. Lett. 2015, 17, 3086.
(c) An, L.; Xiao, Y.-L.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 9079.
[44] (a) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2017, 56, 11700.
(b) Cuenca, A. B.; Shishido, R.; Ito, H.; Fernández, E. Chem. Soc. Rev. 2017, 46, 415.
(c) Fyfe, J. W. B.; Watson, A. J. B. New Tricks. Chem. 2017, 3, 31.
(d) Hemming, D.; Fritzemeier, R.; Westcott, S. A.; Santos, W. L.; Steel, P. G. Chem. Soc. Rev. 2018, 47, 7477.
[45] Wu, N.-Y.; Xu, X.-H.; Qing, F. L. ACS Catal. 2019, 9, 5726.
[46] Cao, Y.; Jiang, L.; Yi, W. Adv. Synth. Catal. 2019, 361, 4360.
[47] Ding, T.; Jiang, L.; Yang, J.; Xu, Y.; Wang, G.; Yi, W. Org. Lett. 2019, 21, 6025.
[48] Olah, G. A.; Pavlath, A. Acta Chim. Acad. Sci. Hung. 1953, 3, 425.
[49] Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Org. Lett. 2008, 10, 557.
[50] Veliks, J.; Kazia, A. Chem.-Eur. J. 2019, 25, 3786.
[51] Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
[52] Melngaile, R.; Sperga, A.; Baldridge, K. K.; Veliks, J. Org. Lett. 2019, 21, 7174.
[53] For reviews, see:(a) Okamura, H.; Bolm, C. Chem. Lett. 2004, 33, 482.
(b) Johnson, C. R. Acc. Chem. Res. 1973, 6, 341.
[54] For selected examples, see:(a) Shen, X.; Zhang, W.; Ni, C.; Gu, Y.; Hu, J. J. Am. Chem. Soc. 2012, 134, 16999.
(b) Shen, X.; Zhang, W.; Zhang, L.; Luo, T.; Wan, X.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 6966.
(c) Zhang, W.; Huang, W.; Hu, J. Angew. Chem., Int. Ed. 2009, 48, 9858.
(d) Zhang, W.; Wang, F.; Hu, J. Org. Lett. 2009, 11, 2109.
[55] Nomura, Y.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 1885.
[56] Yang, Y.-D.; Lu, X.; Liu, G.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. ChemistryOpen 2012, 1, 221.
[57] Shen, X.; Zhou, M.; Ni, C.; Zhang, W.; Hu, J. Chem. Sci. 2014, 5, 117.
[58] Noto, N.; Koike, T.; Akita, M. ACS Catal. 2019, 9, 4382.
[59] Liu, Y.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2017, 56, 9930.
[60] Prakash, G. K. S.; Zhao, X.; Chacko, S.; Wang, F.; Vaghoo, H.; Olah, G. A. J. Fluorine Chem. 2008, 129, 1036.
[61] Sun, X.; Yu, S. Org. Lett. 2014, 16, 2938.
[62] Su, Y.-M.; Feng, G.-S.; Wang, Z.-Y.; L, Q.; Wang, X.-S. Angew. Chem., Int. Ed. 2015, 54, 6003.
[63] Ruan, Z.; Zhang, S.-K.; Zhu, C.; Ruth, P. N.; Stalke, D.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 2045.
[64] Tang, W.-K.; Feng, Y.-S.; Xu, Z.-W.; Cheng, Z.-F.; Xu, J.; Dai, J.-J.; Xu, H.-J. Org. Lett. 2017, 19, 5501.
[65] Huang, H.; Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 1881.
[66] (a) Jadhav, S. D.; Bakshi, D.; Singh, A. J. Org. Chem. 2015, 80, 10187.
(b) Majek, M.; Jacobi von Wangelin, A. Acc. Chem. Res. 2016, 49, 2316.
(c) Meyer, A. U.; Slanina, T.; Yao, C.-J.; König, B. ACS Catal. 2016, 6, 369.
(d) Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Angew. Chem., Int. Ed. 2011, 50, 951.
(e) Yu, C.; Iqbal, N.; Park, S.; Cho, E. J. Chem. Commun. 2014, 50, 12884.
[67] Tang, W.-K.; Xu, Z.-W.; Xu, J.; Tang, F.; Li, X.-X.; Dai, J.-J.; Xu, H.-J.; Feng, Y.-S. Org. Lett. 2019, 21, 196.
[68] (a) Weiss, M. E.; Kreis, L. M.; Lauber, A.; Carreira, E. M. Angew. Chem. 2011, 123, 11321.
(b) Kreis, L. M.; Krautwald, S.; Pfeiffer, N.; Martin, R. E.; Carreira, E. M. Org. Lett. 2013, 15, 1634.
[69] (a) Koide, T.; Aritome, I.; Saeki, T.; Morita, Y.; Shiota, Y.; Yoshizawa, K.; Shimakoshi, H.; Hisaeda, Y. ACS Omega 2018, 3, 4027.
(b) Tada, M.; Kaneko, K. J. Org. Chem. 1995, 60, 6635.
[70] (a) Gupta, B. D.; Roy, S. Inorg. Chim. Acta 1988, 146, 209.
(b) Giese, B.; Hartung, J.; He, J.; Huter, O.; Koch, A. Angew. Chem. 1989, 101, 334.
[71] Okabe, M.; Abe, M.; Tada, M. J. Org. Chem. 1982, 47, 1775.
[72] (a) Xia, X.-D.; Ren, Y.-L.; Chen, J.-R.; Yu, X.-L.; Lu, L.-Q.; Zou, Y.-Q.; Wan, J.; Xiao, W.-J. Chem.-Asian. J. 2015, 10, 124.
(b) Hu, X.-Q.; Chen, J.-R.; Wei, Q.; Liu, F.-L.; Deng, Q.-H.; Beauche-min, A. M.; Xiao, W.-L. Angew. Chem., Int. Ed. 2014, 53, 12163.
(c)Ding, W.; Zhou, Q.-Q.; Xuan, J.; Li, T.-R.; Lu, L.-Q.; Xiao, W.-J. Tetrahedron Lett. 2014, 55, 4648.
[73] Some examples:(a) Wang, L.; Wei, X.; Jia, W.; Zhong, J.; Wu, L.-Z.; Liu, Q. Org. Lett. 2014, 16, 5842.
(b) Jung, J.; Kim, E.; You, Y.; Cho, E. J. Adv. Synth. Catal. 2014, 356, 2741.
(c) Su, Y. M.; Hou, Y.; Yin, F.; Xu, Y. M.; Li, Y.; Zheng, X.; Wang, X. S. Org. Lett. 2014, 16, 2958.
[74] Li, W.; Zhu, Y.; Duan, Y.; Zhang, M.; Zhu, C. Adv. Synth. Catal. 2015, 357, 1277.
[75] Zhao, Q.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2017, 56, 11575.
[76] Liu, F.; Jiang, L.; Qiu, H.; Yi, W. Org. Lett. 2018, 20, 6270.
文章导航

/