研究论文

氰基硼氢化钠还原喹啉合成1,2-二氢喹啉

  • 徐徐清风 ,
  • 黄显韵 ,
  • 张霄 ,
  • 游书力
展开
  • a 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032;
    b 华东理工大学药学院 上海 200237

收稿日期: 2020-04-10

  修回日期: 2020-05-09

  网络出版日期: 2020-05-15

基金资助

国家科技计划(No.2016YFA0202900)和国家自然科学基金(No.21821002)资助项目.

Synthesis of 1,2-Dihydroquinolines by Reduction of Quinolines with Sodium Cyanoborohydride

  • Xu-Xu Qing-Feng ,
  • Huang Xian-Yun ,
  • Zhang Xiao ,
  • You Shu-Li
Expand
  • a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    b School of Pharmacy, East China University of Science and Technology, Shanghai 200237

Received date: 2020-04-10

  Revised date: 2020-05-09

  Online published: 2020-05-15

Supported by

Project supported by the Ministry of Science and Technology of China (No. 2016YFA0202900) and the National Natural Science Foundation of China (No. 21821002).

摘要

1,2-二氢喹啉是一类重要的化合物.通过对已有方法的改进,发展了一类从喹啉出发高效合成1,2-二氢喹啉的反应(产率50%~96%).通过对一系列还原剂的筛选发现,当使用氰基硼氢化钠作为还原剂时,能有效克服已有方法中低转化率的问题,实现被活化的喹啉盐经还原去芳构化反应得到一系列N-烷氧羰基取代的1,2-二氢喹啉.需要指出的是,除3-位或4-位含有取代基的底物能得到单一的目标产物外,其他底物都会生成过度还原的四氢喹啉副产物,二氢喹啉与四氢喹啉比例均大于4:1.同时,该方法相较于文献中的方法操作简便,无须使用大大过量的氯甲酸酯,增强了反应的实用性.

本文引用格式

徐徐清风 , 黄显韵 , 张霄 , 游书力 . 氰基硼氢化钠还原喹啉合成1,2-二氢喹啉[J]. 有机化学, 2020 , 40(10) : 3446 -3451 . DOI: 10.6023/cjoc202004015

Abstract

An efficient conversion of quinolines to 1,2-dihydroquinolines (50%~96% yield) was developed via the modification of the known methods. It was found that using sodium cyanoborohydride as a reductant would overcome the low conversion often encountered in previous studies. A series of N-alkoxycarbonyl-1,2-dihydroquinolines were obtained through reduction of activated quinolium salts. Notably, with the exception of the 3-and 4-substituted substrates, a mixture of 1,2-dihydro-quinolines and the over reduced tetrahydroquinolines was obtained with the ratio over 4:1. Besides, compared to the established methods, an easy operation without using large excess of chloroformate further enhances practicability of the methodology.

参考文献

[1] (a) Belleau, B.; Martel, R. R.; Lacasse, G.; Menard, M.; Weinberg, N. L.; Perron, Y. G. J. Am. Chem. Soc. 1968, 90, 823.
(b) Dillard, R. D.; Pavey, D. E.; Benslay, D. N. J. Med. Chem. 1973, 16, 251.
(c) Takahashi, H.; Bekkali, Y.; Capolino, A. J.; Gilmore, T.; Goldrick, S. E.; Nelson, R. M.; Trenzio, D.; Wang, J.; Zuvela-Jelaska, L.; Proudfoot, J.; Nabozny, G.; Thomson, D. Bioorg. Med. Chem. Lett. 2006, 16, 1549.
(d) Victor, N. J.; Sakthivel, R.; Muraleedharan, K. M.; Karunagaran, D. ChemMedChem 2013, 8, 1623.
(e) Duggirala, S.; Napoleon, J. V.; Nankar, R. P.; Adeeba, V. S.; Manheri, M. K.; Doble, M. Eur. J. Med. Chem. 2016, 123, 557.
[2] (a) Jean-Gérard, L.; Macé, F.; Ngo, A. N.; Pauvert, M.; Dentel, H.; Evain, M.; Collet, S.; Guingant, A. Eur. J. Org. Chem. 2012, 2012, 4240.
(b) Ren, X.; Li, G.; Huang, J.; Wang, W.; Zhang, Y.; Xing, G.; Gao, C.; Zhao, G.; Zhao, J.; Tang, Z. Org. Lett. 2017, 19, 58.
(c) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci. 2011, 2, 980.
(d) Kodama, T.; Moquist, P. N.; Schaus, S. E. Org. Lett. 2011, 13, 6316.
(e) Sun, S.; Mao, Y.; Lou, H.; Liu, L. Chem. Commun. 2015, 51, 10691.
(f) Volla, C. M. R.; Fava, E.; Atodiresei, I.; Rueping, M. Chem. Commun. 2015, 51, 15788.
(g) Berti, F.; Malossi, F.; Marchetti, F.; Pineschi, M. Chem. Commun. 2015, 51, 13694.
(h) Liu, Z.; Zhao, R.; He, N.; Li, W. Chin. J. Org. Chem. 2018, 38, 1261(in Chinese). (刘子强, 赵冉, 贺妮, 李伟, 有机化学, 2018, 38, 1261.)
[3] (a) Li, G.; Liu, H.; Wang, Y.; Zhang, S.; Lai, S.; Tang, L.; Zhao, J.; Tang, Z. Chem. Commun. 2016, 52, 2304.
(b) Kubota, K.; Watanabe, Y.; Ito, H. Adv. Synth. Catal. 2016, 358, 2379.
(c) Kong, D.; Han, S.; Wang, R.; Li, M.; Zi, G.; Hou, G. Chem. Sci. 2017, 8, 4558.
(d) Kong, D.; Han, S.; Zi, G.; Hou, G.; Zhang, J. J. Org. Chem. 2018, 83, 1924.
(e) Xu-Xu, Q.-F.; Zhang, X.; You, S.-L. Org. Lett. 2019, 21, 5357.
(f) Wedek, V.; Lommel, R. V.; Daniliuc, C. G.; Proft, F. D.; Hennecke, U. Angew. Chem. Int. Ed. 2019, 58, 9239.
(g) Xu-Xu, Q.-F.; Zhang, X.; You, S.-L. Org. Lett. 2020, 22, 1530.
[4] For a related reaction by using 1, 2-dihydropyridines, see:Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. J. Am. Chem. Soc. 2016, 138, 4338.
[5] (a) Tiwari, V. K.; Pawar, G. G.; Das, R.; Adhikary, A.; Kapur, M. Org. Lett. 2013, 15, 3310.
(b) Das, R.; Khot, N. P.; Deshpande, A. S.; Kapur, M. Chem. Eur. J. 2020, 26, 927.
[6] Pang, M.; Chen, J.-Y.; Zhang, S.; Liao, R.-Z.; Tung, C.-H.; Wang, W. Nat. Commun. 2020, 11, 1249.
[7] (a) Luo, Y.; Li, Z.; Li, C.-J. Org. Lett. 2005, 7, 2675.
(b) Liu, X.; Lu, Y. Org. Biomol. Chem. 2010, 8, 4063.
(c) Zhu, C.; Ma, S. Angew. Chem. Int. Ed. 2014, 53, 13532.
(d) Luo, Q.; Xie, Y.; Chen, Z.; Yan, S.; Deng, W.; Liu, Y.; Wang, L. Chin. J. Org. Chem. 2014, 34, 2537(in Chinese). (罗倩, 谢永新, 陈朝阳, 闫世友, 邓文叶, 刘义, 王璐璐, 有机化学, 2014, 34, 2537.)
(e) Ding, D.; Mou, T.; Feng, M.; Jiang, X. J. Am. Chem. Soc. 2016, 138, 5218.
(f) Kuppusamy, R.; Santhoshkumar, R.; Boobalan, R.; Wu, H.-R.; Cheng, C.-H. ACS Catal. 2018, 8, 1880.
(g) Wang, G.; Huang, H.; Guo, W.; Qian, C.; Sun, J. Angew. Chem. Int. Ed. 2020, 59, 11245.
[8] For selected reviews, see: (a) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557.
(b) Luo, Y.-E.; He, Y.-M.; Fan, Q.-H. Chem. Rec. 2016, 16, 2697.
(c) Giustra, Z. X.; Ishibashi, J. S. A.; Liu, S.-Y. Coord. Chem. Rev. 2016, 314, 134.
(d) Meng, W.; Feng, X.; Du, H. Acc. Chem. Res. 2018, 51, 191.
(e) Meng, W.; Feng, X.; Du, H. Chin. J. Chem. 2020, 38, 625. For recent examples, see:
(f) Cai, X.-F.; Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-G. Chem. Commun. 2014, 50, 9588.
(g) Li, B.; Xu, C.; He, Y.-M.; Deng, G.-J.; Fan, Q.-H. Chin. J. Chem. 2018, 36, 1169.
(h) Chen, Y.; He, Y.-M.; Zhang, S.; Miao, T.; Fan, Q.-H. Angew. Chem. Int. Ed. 2019, 58, 3809.
(i) Hu, X.-H.; Hu, X.-P. Org. Lett. 2019, 21, 10003.
(j) Liu, Y.; Chen, F.; He, Y.-M.; Li, C.; Fan, Q.-H. Org. Biomol. Chem. 2019, 17, 5099.
(k) Chen, Y.; Pan, Y.; He, Y.-M.; Fan, Q.-H. Angew. Chem. Int. Ed. 2019, 58, 16831.
(l) Li, X.; Tian, J.-J.; Liu, N.; Tu, X.-S.; Zeng, N.-N.; Wang, X.-C. Angew. Chem. Int. Ed. 2019, 58, 4664.
(m) Tao, L.; Ren, Y.; Li, C.; Li, H.; Chen, X.; Liu, L.; Yang, Q. ACS Catal. 2020, 10, 1783.
(n) Wang, L.-R.; Chang, D.; Feng, Y.; He, Y.-M.; Deng, G.-J.; Fan, Q.-H. Org. Lett. 2020, 22, 2251.
[9] For selected reviews, see: (a) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498. For recent examples, see:
(b) Cai, X.-F.; Guo, R.-N.; Feng, G.-S.; Wu, B.; Zhou, Y.-G. Org. Lett. 2014, 16, 2680.
(c) Cai, X.-F.; Guo, R.-N.; Chen, M.-W.; Shi, L.; Zhou, Y.-G. Chem. Eur. J. 2014, 20, 7245.
(d) Guo, R.-N.; Chen, Z.-P.; Cai, X.-F.; Zhou, Y.-G. Synthesis 2014, 46, 2751.
(e) Wang, J.; Chen, M.-W.; Ji, Y.; Hu, S.-B.; Zhou, Y.-G. J. Am. Chem. Soc. 2016, 138, 10413.
(f) Aillerie, A.; Lemau de Talencé, V.; Dumont, C.; Pellegrini, S.; Capet, F.; Bousquet, T.; Pélinski, L. New J. Chem. 2016, 40, 9034.
(g) Zhang, J.-F.; Zhong, R.; Zhou, Q.; Hong, X.; Huang, S.; Cui, H.-Z.; Hou, X.-F. ChemCatChem 2017, 9, 2496.
(h) Mitra, R.; Zhu, H.; Grimme S.; Niemeyer, J. Angew. Chem. Int. Ed. 2017, 56, 11456.
(i) Qiao, X.; El-Shahat, M.; Ullah, B.; Bao, Z.; Xing, H.; Xiao, L.; Ren, Q.; Zhang, Z. Tetrahedron Lett. 2017, 58, 2050.
(j) Han, Y.; Wang, Z.; Xu, R.; Zhang, W.; Chen, W.; Zheng, L.; Zhang, J.; Luo, J.; Wu, K.; Zhu, Y.; Chen, C.; Peng, Q.; Liu, Q.; Hu, P.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2018, 57, 11262.
(k) Chen, X.; Chen, J.; Bao, Z.; Yang, Q.; Yang, Y.; Ren, Q.; Zhang, Z. Chin. J. Org. Chem. 2019, 39, 1681(in Chinese). (陈晓玲, 陈静雯, 鲍宗必, 杨启炜, 杨亦文, 任其龙, 张治国, 有机化学, 2019, 39, 1681.)
[10] For a review, see: (a) Park, S.; Chang, S. Angew. Chem. Int. Ed. 2017, 56, 7720. For selected examples, see:
(b) Voutchkova, A. M.; Gnanamgari, D.; Jakobsche, C. E.; Butler, C.; Miller, S. J.; Parr, J.; Crabtree, R. H. J. Organomet. Chem. 2008, 693, 1815.
(c) Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Köhn, G.; Weetman, C. Organometallics 2011, 30, 5556.
(d) Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J. Nat. Chem. 2014, 6, 1100.
(e) Intemann, J,; Bauer, H.; Pahl, J.; Maron, L.; Harder, S. Chem. Eur. J. 2015, 21, 11452.
(f) Jeong, J.; Park, S.; Chang, S. Chem. Sci. 2016, 7, 5362.
(g) Liu, Z.-Y.; Wen, Z.-H.; Wang, X.-C. Angew. Chem. Int. Ed. 2017, 56, 5817.
(h) Zhang, F.; Song, H.; Zhuang, X.; Tung, C.-H.; Wang, W. J. Am. Chem. Soc. 2017, 139, 17775.
(i) Rao, B.; Chong, C. C.; Kinjo, R. J. Am. Chem. Soc. 2018, 140, 652.
[11] Too, P. C.; Chan, G. H.; Tnay, Y. L.; Hirao, H.; Chiba, S. Angew. Chem. Int. Ed. 2016, 55, 3719.
[12] Blackburn, B. K.; Frysinger, J. F.; Minter, D. E. Tetrahedron Lett. 1984, 25, 4913.
文章导航

/