综述与进展

基于C(sp3)—H键断裂策略的杂环芳烃自由基烷基化反应进展

  • 罗文坤 ,
  • 杨凯 ,
  • 尹标林
展开
  • a 华南理工大学化学与化工学院 广东省功能分子工程重点实验室 广州 510640;
    b 赣南医学院药学院 江西赣州 341000

收稿日期: 2020-04-14

  修回日期: 2020-05-09

  网络出版日期: 2020-05-19

基金资助

国家自然科学基金(No.21871094)及赣南医学院校级课题(No.YB201903)资助项目.

Recent Progress in Radical Alkylation of Heteroarenes Based on C(sp3)-H bond Cleavage Strategy

  • Luo Wenkun ,
  • Yang Kai ,
  • Yin Biaolin
Expand
  • a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640;
    b College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000

Received date: 2020-04-14

  Revised date: 2020-05-09

  Online published: 2020-05-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 21871094) and the Scientific Research Project of Gannan Medical University (No. YB201903).

摘要

杂环芳烃广泛存在于合成药物和天然产物中,具有多种生物活性.其中,烷基化的杂环芳烃在药物化学与医药工业中扮演着重要的角色,也引起了合成化学家的高度重视.C(sp3)—H断裂的策略由于具有优异的原子经济性,在有机合成中被广泛应用于杂环芳烃的自由基烷基化反应,并且在复杂天然产物及药物分子的合成中都有成功的应用.根据产生自由基的前体化合物的不同(包括醚、醇、胺、酯、酰胺和普通烷烃),综述了近10年来C(sp3)—H断裂的新策略在杂环芳烃自由基烷基化反应中的发展,并对相关机理进行了讨论.

本文引用格式

罗文坤 , 杨凯 , 尹标林 . 基于C(sp3)—H键断裂策略的杂环芳烃自由基烷基化反应进展[J]. 有机化学, 2020 , 40(8) : 2290 -2307 . DOI: 10.6023/cjoc202004024

Abstract

Heteroarenes are widely found in synthetic drugs and natural products and exhibit various biological activities. Among them, alkylated heteroarenes play a crucial role in the pharmaceutical industry, and have attracted great attention of synthetic chemists. C(sp3)-H bond cleavage strategy was widely used in radical alkylation of heteroarenes in organic synthesis and has been successfully applied in the total synthesis of natural products and pharmaceuticals due to its excellent atom economy. Based on the different precursor compounds (ethers, alcohols, amines, esters, amides and common alkanes), the research progress of radical alkylation of heteroarenes in a decade is summarized, and the related mechanism is also discussed.

参考文献

[1] McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
[2] Roth, E. M.; McKenney, J. M.; Hanotin, C.; Asset, G.; Stein, E. A. New Engl. J. Med. 2012, 367, 1891.
[3] Chan, K. L.; Teo, K.; Dumesnil, J. G.; Ni, A.; Tam, J. Circulation 2010, 121, 306.
[4] Wysham, C.; Blevins, T.; Arakaki, R.; Colon, G.; Garcia, P.; Atisso, C.; Kuhstoss, D.; Lakshmanan, M. Diabetes Care 2014, 37, 2159.
[5] Clotet, B.; Feinberg, J.; van Lunzen, J.; Khuong-Josses, M.-A.; Antinori, A.; Dumitru, I.; Pokrovskiy, V.; Fehr, J.; Ortiz, R.; Saag, M.; Harris, J.; Brennan, C.; Fujiwara, T.; Min, S. Lancet 2014, 383, 2222.
[6] White, W. B.; Weber, M. A.; Sica, D.; Bakris, G. L.; Perez, A.; Cao, C.; Kupfer, S. Hypertension 2011, 57, 413.
[7] Diez, J.; Querejeta, R.; Lopez, B.; Gonzalez, A.; Larman, M.; Ubago, J. L. M. Circulation 2002, 105, 2512.
[8] Yusuf, S.; Teo, K.; Anderson, C.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P. Lancet 2008, 372, 1174.
[9] Goldstein, I.; Lue, T. F.; Padma-Nathan, H.; Rosen, R. C.; Steers, W. D.; Wicker, P. A. New Engl. J. Med. 1998, 338, 1397.
[10] Ackermann, L. Chem. Commun. 2010, 46, 4866.
[11] Minisci, F.; Galli, R.; Malatesta, V.; Caronna, T. Tetrahedron 1970, 26, 4083.
[12] Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
[13] DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem., Int. Ed. 2014, 53, 4802.
[14] Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057.
[15] Gutierrez-Bonet, A.; Remeur, C.; Matsui, J. K.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 12251.
[16] Xiao, B.; Liu, Z.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 616.
[17] Wu, X.; See, J. W. T.; Xu, K.; Hirao, H.; Roger, J.; Hierso, J.; Zhou, J. R. Angew. Chem., Int. Ed. 2014, 53, 13573.
[18] McCallum, T.; Barriault, L. Chem. Sci. 2016, 7, 4754.
[19] Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.
[20] Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
[21] Liu, P.; Liu, W.; Li, C.-J. J. Am. Chem. Soc. 2017, 139, 14315.
[22] Klauck, F. J. R.; James, M. J.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 12336.
[23] Li, G. X.; Morales-Rivera, C.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[24] Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512.
[25] Correia, C. A.; Yang, L.; Li, C. J. Org. Lett. 2011, 13, 4581.
[26] Xie, Z.; Cai, Y.; Hu, H.; Lin, C.; Jiang, J.; Chen, Z.; Wang, L.; Pan, Y. Org. Lett. 2013, 15, 4600.
[27] Wu, Z.; Pi, C.; Cui, X.; Bai, J.; Wu, Y. Adv. Synth. Catal. 2013, 355, 1971.
[28] Correa, A.; Fiserb, B.; Gόmez-Bengoa, E. Chem. Commun. 2015, 51, 13365.
[29] Neubert, T. D.; Schmidt, Y.; Conroy, E.; Stamos, D. Org. Lett. 2015, 17, 2362.
[30] Jin, L. K.; Wan, L.; Feng, J.; Cai, C. Org. Lett. 2015, 17, 4726.
[31] Wang, C.; Gong, M.; Huang, M.; Li, Y.; Kim, J. K.; Wu, Y. Tetrahedron 2016, 72, 7931.
[32] Li, Y.; Wang, M.; Fan, W.; Qian, F.; Li, G. G.; Lu, H. J. J. Org. Chem. 2016, 81, 11743.
[33] Wu, Y.-H.; Wang, N.-X.; Zhang, T.; Zhang, L.-Y.; Gao, X.-W.; Xu, B.-C.; Xing, Y.; Chi, J.-Y. Org. Lett. 2019, 21, 7450.
[34] Wang, S.; Fan, Y.; Zhao, H.; Wang, J.; Zhang, S.; Wang, W. Synlett 2019, 30, 2096.
[35] He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
[36] Jin, L.; Feng, J.; Lu, G.; Cai, C. Adv. Synth. Catal. 2015, 357, 2105.
[37] Ambala, S.; Thatikonda, T.; Sharma, S.; Munagala, G.; Yempalla, K. R.; Vishwakarma, R. A.; Singh, P. P. Org. Biomol. Chem. 2015, 13, 11341.
[38] Yang, Q. J.; Choy, P. Y.; Wu, Y. N.; Fan, B. M.; Kwong, F. Y. Org. Biomol. Chem. 2016, 14, 2608.
[39] McCallum, T.; Jouanno, L. A.; Cannillo, A.; Barriault, L. Synlett 2016, 27, 1282.
[40] Liu, S.; Liu, A.; Zhang, Y.; Wang, W. Chem. Sci. 2017, 8, 4044.
[41] Lai, M.; Li, Y.; Wu, Z.; Zhao, M.; Ji, X.; Liu, P.; Zhang, X. Asian J. Org. Chem. 2018, 7, 1118.
[42] Dong, D.-Q.; Li, G.-H.; Chen, D.-M.; Sun, Y.-Y.; Han, Q.-Q.; Wang, Z.-L.; Xu, X.-M.; Yu, X.-Y. Chin. J. Org. Chem. 2020, 40, 1766(in Chinese). (董道青, 李光辉, 陈德茂, 孙媛媛, 韩晴晴, 王祖利, 徐鑫明, 于贤勇, 有机化学, 2020, 40, 1766.)
[43] Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87.
[44] Jin, J.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565.
[45] Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980.
[46] Devariab, S.; Shah, B. A. Chem. Commun. 2016, 52, 1490.
[47] Liu, W.; Yang, X.; Zhou, Z. Z.; Li, C. J. Chem 2017, 2, 688.
[48] McCallum, T.; Pitre, S. P.; Morin, M.; Scaiano, J. C.; Barriault, L. Chem. Sci. 2017, 8, 7412.
[49] Ye, L.; Cai, S.-H.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Feng, C.; Loh, T.-P. Org. Lett. 2017, 19, 6164.
[50] Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343.
[51] Ghosh, T.; Maity, P.; Ranu, B. C. Org. Lett. 2018, 20, 1011.
[52] Li, G.-X.; Hu, X.; He, G.; Chen, G. Chem. Sci. 2019, 10, 688.
[53] Niu, L.; Liu, J.; Liang, X.-A.; Wang, S.; Lei, A. Nat. Commun. 2019, 10, 467.
[54] Huang, C.-Y.; Li, J.; Liu, W.; Li, C.-J. Chem. Sci. 2019, 10, 5018.
[55] Vijeta, A.; Reisner, E. Chem. Commun. 2019, 55, 14007.
[56] Wang, Z.; Ji, X.; Han, T.; Deng, G.-J.; Huang, H. Adv. Synth. Catal. 2019, 361, 5643.
[57] Singsardar, M.; Laru, S.; Mondal, S.; Hajra, A. J. Org. Chem. 2019, 84, 4543.
[58] Huang, H.; Strater, Z. M.; Lambert, T. H. J. Am. Chem. Soc. 2020, 142, 1698.
[59] Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. J. Org. Chem. 2014, 79, 11631.
[60] Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610.
[61] Zhang, Y.; Teuscher, K. B.; Ji, H. Chem. Sci. 2016, 7, 2111.
[62] Okugawa, N.; Moriyama, K.; Togo, H. I. J. Org. Chem. 2017, 82, 170.
[63] Dong, J.; Xia, Q.; Lv, X.; Yan, C.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2018, 20, 5661.
[64] Bosset, C.; Beucher, H.; Bretel, G.; Pasquier, E.; Queguiner, L.; Henry, C.; Vos, A.; Edwards, J. P.; Meerpoel, L.; Berthelot, D. Org. Lett. 2018, 20, 6003.
[65] Chen, H.; Fan, W.; Yuan, X.-A.; Yu, S. Nat. Commun. 2019, 10, 4743.
[66] Xia, R.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. Org. Lett. 2012, 14, 5546.
[67] Antonchick, A. P.; Burgmann, L. Angew. Chem., Int. Ed. 2013, 52, 3267.
[68] Fang, L.; Chen, L.; Yu, J.; Wang, L. Eur. J. Org. Chem. 2015, 1910.
[69] Xiu, J.; Yi, W. Catal. Sci. Technol. 2016, 6, 998.
[70] Wang, D.-C.; Xia, R.; Xie, M.-S.; Qu, G.-R.; Guo, H.-M. Org. Biomol. Chem. 2016, 14, 4189.
[71] Quattrini, M. C.; Fujii, S.; Yamada, K.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Chem. Commun. 2017, 53, 2335.
[72] Wang, X.; Lei, B.; Ma, L.; Zhu, L.; Zhang, X.; Zuo, H.; Zhuang, D.; Li, Z. Chem.-Asian J. 2017, 12, 2799.
[73] Li, G.-X.; Hu, X.; He, G.; Chen, G. ACS Catal. 2018, 8, 11847.
[74] Liang, X.-A.; Niu, L.; Wang, S.; Liu, J.; Lei, A. Org. Lett. 2019, 21, 2441.
[75] Zhao, H.; Jin, J. Org. Lett. 2019, 21, 6179.
[76] Huang, C.; Wang, J.-H.; Qiao, J.; Fan, X.-W.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Org. Chem. 2019, 84, 12904.
文章导航

/