综述与进展

通过Ar—P键构筑合成芳基膦酸酯类化合物的研究进展

  • 孙凯 ,
  • 刘海东 ,
  • 谢奇 ,
  • 罗海清
展开
  • 赣南师范大学化学化工学院 江西赣州 341000

收稿日期: 2020-02-06

  修回日期: 2020-05-08

  网络出版日期: 2020-05-28

基金资助

国家自然科学基金(Nos.21762002,21562003)资助项目.

Progress in the Synthesis of Arylphosphonates via Ar-P Bond Construction

  • Sun Kai ,
  • Liu Haidong ,
  • Xie Qi ,
  • Luo Haiqing
Expand
  • Department of Chemistry&Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000

Received date: 2020-02-06

  Revised date: 2020-05-08

  Online published: 2020-05-28

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21762002, 21562003).

摘要

芳基膦酸酯及其衍生物是一类非常重要的有机分子,在药物化学、材料化学以及有机催化等研究领域均有着广泛应用.以各种构筑Ar—P键方法中芳基源的种类进行分类,介绍了近年来过渡金属催化和光诱导下合成芳基膦酸酯类化合物所取得的研究进展.

本文引用格式

孙凯 , 刘海东 , 谢奇 , 罗海清 . 通过Ar—P键构筑合成芳基膦酸酯类化合物的研究进展[J]. 有机化学, 2020 , 40(8) : 2275 -2289 . DOI: 10.6023/cjoc202002006

Abstract

Arylphosphonates and their derivatives are an important class of molecules because of their broad application in medicinal chemistry, material chemistry and organic catalysis. On basis of various aryl sources for the Ar-P bond construction, the recent advances in the development of the synthesis of arylphosphonates catalyzed by transition metals and photoinduced are surveyed.

参考文献

[1] Baumgartner, T.; Réau, R. Chem. Rev. 2006, 106, 4681.
[2] White, A. K.; Metcalf, W. W. Annu. Rev. Microbiol. 2007, 61, 379.
[3] Clercq, E. D. Med. Res. Rev. 2009, 30, 667.
[4] Iaroshenko, V. In Organophosphorus Chemistry:From Molecules to Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2019, p. 59.
[5] Schwan, A. L. Chem. Soc. Rev. 2004, 33, 218.
[6] Van der Jeught, S.; Stevens, C. V. Chem. Rev. 2009, 109, 2672.
[7] Henyecz, R.; Keglevich, G. Curr. Org. Synth. 2019, 16, 523.
[8] Cai, B.-G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
[9] Chen, T.; Zhang, J.-S.; Han, L.-B. Dalton Trans. 2016, 45, 1843.
[10] (a) Budnikova, Y. H.; Gryaznova, T. V.; Grinenko, V. V.; Dudkina, Y. B.; Khrizanforov, M. N. Pure Appl. Chem. 2017, 89, 311.
(b) Budnikova, Y. H.; Sinyashin, O. G. Russ. Chem. Rev. 2015, 84, 917.
[11] (a) Jiménez, M. V.; Pérez-Torrente, J. J.; Bartolomé, M. I.; Oro, L. A. Synthesis 2009, 1916.
(b) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495.
[12] Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Synthesis 1981, 56.
[13] Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Bull. Chem. Soc. Jpn. 1982, 55, 909.
[14] Kalek, M.; Jezowska, M.; Stawinski, J. Adv. Synth. Catal. 2009, 351, 3207.
[15] Kohler, M. C.; Sokol, J. G.; Stockland Jr, R. A. Tetrahedron Lett. 2009, 50, 457.
[16] Xu, J.; Zhang, P.; Gao, Y.; Chen, Y.; Tang, G.; Zhao, Y. J. Org. Chem. 2013, 78, 8176.
[17] Huang, C.; Tang, X.; Fu, H. Jiang, Y.; Zhao, Y. J. Org. Chem. 2006, 71, 5020.
[18] Ballester, J.; Gatignol, J.; Schmidt, G.; Alayrac, C.; Gaumont, A.-C.; Taillefer, M. ChemCatChem 2014, 6, 1549.
[19] Zhao, Y. L.; Wu, G. J.; Li, Y.; Gao, L. X.; Han, F. S. Chem.-Eur. J. 2012, 18, 9622.
[20] Kinbara, A.; Ito, M.; Abe, T.; Yamagishi, T. Tetrahedron 2015, 71, 7614.
[21] Kalek, M.; Ziadi, A.; Stawinski, J. Org. Lett. 2008, 10, 4637.
[22] Jablonkai, E.; Keglevich, G. Tetrahedron Lett. 2014, 44, 4185.
[23] Shaikh, R. S.; Düsel, S. J. S.; König, B. ACS Catal. 2016, 6, 8410.
[24] Ghosh, I.; Shaikh, R. S.; König, B. Angew. Chem., Int. Ed. 2017, 129, 8664.
[25] Lecroq, W.; Bazille, P.; Morlet-Savary, F.; Breugst, M.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. Org. Lett. 2018, 20, 4164.
[26] Zeng, H.; Dou, Q.; Li, C.-J. Org. Lett. 2019, 21, 1301.
[27] Sengmany, S.; Ollivier, A.; Le Gall, E.; Léonel, E. Org. Biomol. Chem. 2018, 16, 4495.
[28] Wang, S.; Yang, C.; Sun, S.; Wang, J. Chem. Commun. 2019, 55, 14035.
[29] Bai, Y.; Liu, N.; Wang, S.; Wang, S.; Ning, S.; Shi, L.; Cui, L.; Zhang, Z.; Xiang, J. Org. Lett. 2019, 21, 6835.
[30] Andaloussi, M.; Lindh, J.; Savmarker, J.; Sjoberg, P. J. R.; Larhed, M. Chem.-Eur. J. 2009, 15, 13069.
[31] Zhuang, R.; Xu, J.; Cai, Z.; Tang, G.; Fang, M.; Zhao, Y. Org. Lett. 2011, 13, 2110.
[32] Hu, G.; Chen, W.; Fu, T.; Peng, Z.; Qiao, H.; Gao, Y.; Zhao, Y. Org. Lett. 2013, 15, 5362.
[33] Hicks, I.; McTague, J.; Hapatsha, T.; Teriak, R.; Kaur, P. Molecules 2020, 25, 290.
[34] Chen, T.-H.; Reddy, D. M.; Lee, C.-F. RSC Adv. 2017, 7, 30214.
[35] Berrino, R.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Stabile, P. Org. Biomol. Chem. 2010, 8, 4518.
[36] He, Y.; Wu, H.; Toste, F. D. Chem. Sci. 2015, 46, 1194.
[37] Wang, S.; Qiu, D.; Mo, F.; Zhang, Y.; Wang, J. J. Org. Chem. 2016, 81, 11603.
[38] Xu, W.; Hu, G.; Xu, P.; Gao, Y.; Yin, Y.; Zhao, Y. Adv. Synth. Catal. 2014, 14, 2948.
[39] Chen, S.-Y.; Zeng, R.-S.; Zou, J.-P.; Asekun, O. T. J. Org. Chem. 2014, 79, 1449.
[40] Li, R.; Chen, X.; Wei, S.; Sun, K.; Fan, L.-L.; Liu, Y.; Qu, L.; Zhao, Y.; Yu, B. Adv. Synth. Catal. 2018, 360, 4807.
[41] Qiu, D.; Lian, C.; Mao, J.; Ding, Y.; Liu, Z.; Wei, L.; Fagnoni, M.; Protti, S. Adv. Synth. Catal. 2019, 361, 5239.
[42] Jian, Y.; Chen, M.; Huang, B.; Jia, W.; Yang, C.; Xia, W. Org. Lett. 2018, 20, 5370.
[43] Yang, G.; Shen, C.; Zhang, L.; Zhang, W. Tetrahedron Lett. 2011, 52, 5032.
[44] Yang, J.; Chen, T.; Han, L.-B. J. Am. Chem. Soc. 2015, 137, 1782.
[45] Yang, J.; Xiao, J.; Chen, T.; Han, L.-B. J. Org. Chem. 2016, 81, 3911.
[46] Liao, L.-L.; Gui, Y.-Y.; Zhang, X.-B.; Shen, G.; Liu, H.-D.; Zhou, W.-J.; Li, J.; Yu, D.-G. Org. Lett. 2017, 19, 3735.
[47] Miao, T.; Wang, L. Adv. Synth. Catal. 2014, 356, 967.
[48] Li, J.; Bi, X.; Wang, H.; Xiao, J. RSC Adv. 2014, 4, 19214.
[49] Yang, J.; Xiao, J.; Chen, T.; Yin, S.-F.; Han, L.-B. Chem. Commun. 2016, 52, 12233.
[50] Feng, C. G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322.
[51] Li, C.; Yano, T.; Ishida N.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 9801.
[52] Min, M.; Kang, D.; Jung, S.; Hong, S. Adv. Synth. Catal. 2016, 358, 1296.
[53] Hong, G.; Mao, D.; Wu, S.; Wang, L. J. Org. Chem. 2014, 79, 10629.
[54] Wang, S.; Guo, R.; Wang, G.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2014, 50, 12718.
[55] Hore, S.; Srivastava, A.; Singh, R. P. J. Org. Chem. 2019, 84, 6868.
[56] Effenberger, F.; Kottmann, H. Tetrahedron 1985, 41, 4171.
[57] Mao, X.; Ma, X.; Zhang, S.; Hu, H.; Zhu, C.; Cheng, Y. Eur. J. Org. Chem. 2013, 20, 4245.
[58] Kagayama, T.; Nakano, A.; Sakaguchi, S.; Ishii, Y. Org. Lett. 2006, 8, 407.
[59] Berger, O.; Montchamp, J.-L. J. Org. Chem. 2019, 84, 9239.
[60] Niu, L.; Liu, J.; Yi, H. Wang, S.; Liang, X.-A.; Singh, A. K.; Chiang, C.-W.; Lei, A. ACS Catal. 2017, 7, 7412.
[61] Yuan, Y.; Qiao, J.; Cao, Y.; Tang, J.; Wang, M.; Ke, G.; Lu, Y.; Liu, X.; Lei, A. Chem. Commun. 2019, 55, 4230.
[62] Liu, C.; Szostak, M. Angew. Chem., Int. Ed. 2017, 56, 12718.
[63] Isshiki, R.; Muto, K.; Yamaguchi, J. Org. Lett. 2018, 20, 1150.
[64] Dong, J.; Liu, L.; Ji, X.; Shang, Q.; Liu, L.; Su, L.; Chen, B.; Kan, R.; Zhou, Y.; Yin, S.-F.; Han, L.-B. Org. Lett. 2019, 21, 3198.
[65] Li, J.; Bi, X.; Wang, H.; Xiao, J. Asian J. Org. Chem. 2014, 3, 1113.
[66] Liu, C.; Ji, C.-L.; Zhou, T.; Hong, X.; Szostak, M. Org. Lett. 2019, 21, 9256.
[67] Dhokale, R. A.; Mhaske, S. B. Org. Lett. 2013, 15, 2218.
[68] Chen, Q.; Yan, X.; Du, Z.; Zhang, K.; Wen, C. J. Org. Chem. 2016, 81, 276.
[69] Yang, G.; Shen, C.; Quan, M.; Zhang, W. Tetrahedron 2016, 72, 333.
[70] Wang, T.; Sang, S.; Liu, L.; Qiao, H.; Gao, Y.; Zhao, Y. J. Org. Chem. 2014, 79, 608.
[71] Luo, H.; Liu, H.; Chen, X.; Wang, K.; Luo, X.; Wang, K. Chem. Commun. 2017, 53, 956.
[72] Matsumura, M.; Dong, Y.; Kakusawa, N.; Yasuike, S. Chem. Pharm. Bull. 2015, 63, 130.
[73] Yu, Y.; Yi, S.; Zhu, C.; Hu, W.; Gao, B.; Chen, Y.; Wu, W.; Jiang, H. Org. Lett. 2016, 18, 400.
文章导航

/