综述与进展

过渡金属催化的不对称电化学进展

  • 王向阳 ,
  • 徐学涛 ,
  • 王振华 ,
  • 方萍 ,
  • 梅天胜
展开
  • a 五邑大学生物科技与大健康学院 广东江门 529020;
    b 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 分子合成科学卓越中心 上海 200032

收稿日期: 2020-03-09

  修回日期: 2020-05-24

  网络出版日期: 2020-05-28

基金资助

中国科学院战略性先导科技专项(No.XDB20000000)、国家自然科学基金(Nos.91956112,21572245,21772222,21772220)和上海市科委基础研究(Nos.17JC1401200,18JC1415600)资助项目.

Advances in Asymmetric Organotransition Metal-Catalyzed Electrochemistry

  • Wang Xiangyang ,
  • Xu Xuetao ,
  • Wang Zhenhua ,
  • Fang Ping ,
  • Mei Tiansheng
Expand
  • a School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangzhou 529020;
    b State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2020-03-09

  Revised date: 2020-05-24

  Online published: 2020-05-28

Supported by

Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the National Natural Science Foundation of China (Nos. 91956112, 21572245, 21772222, 21772220), and the Program of Shanghai Science and Technology Committee of Shanghai (Nos. 17JC1401200, 18JC1415600).

摘要

总结了近年来过渡金属催化的不对称电化学进展.过渡金属催化的不对称电化学(AOMCE)分为氧化和还原反应.在氧化反应方面,发展了烯烃的不对称官能团化,二级醇或醛的动力学拆分以及碳氢键的不对称官能团化反应.在还原反应部分包括二氧化碳的不对称电化学羧化、不对称电化学脱羧反应以及不对称还原偶联反应.手性配体和过渡金属催化剂与电化学体系的结合构成了一个非常新颖的反应体系,为解决传统有机电化学合成中立体选择性控制的难题,提供了一条新途径.

本文引用格式

王向阳 , 徐学涛 , 王振华 , 方萍 , 梅天胜 . 过渡金属催化的不对称电化学进展[J]. 有机化学, 2020 , 40(11) : 3738 -3747 . DOI: 10.6023/cjoc202003022

Abstract

The recent developments in asymmetric organotransition metal-catalyzed electrochemistry (AOMCE) are summarized. AOMCE processes can be divided into oxidative and reductive variants. In terms of oxidations, asymmetric functionalization of olefins, oxidative kinetic resolution of secondary alcohols or aldehydes, and asymmetric C—H functionalization reactions have been developed. Reductive processes discussed include asymmetric electrochemical carboxylation with carbon dioxide, asymmetric electrochemical decarboxylation, and asymmetric reductive coupling reactions. The combination of chiral ligands, transition-metal catalysts, and electrochemistry provides a novel angle by which to address the longstanding fundamental challenge of stereoinduction in traditional electrochemical organic synthesis.

参考文献

[1] Kolbe, H. J. Prakt. Chem. 1847, 41, 137.
[2] Baizer, M. M. J. Electrochem. Soc. 1964, 111, 215.
[3] (a) Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561.
(b) Siu, J. C.; Fu, N.; Lin, S. Acc. Chem. Res. 2020, 53, 547.
(c) Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322.
(d) Flexer, V.; Jourdin, L. Acc. Chem. Res. 2020, 53, 311.
(e) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
(f) Robinson, S.; Sigman, M. S. Acc. Chem. Res. 2020, 53, 289.
(g) Jing, Q.; Moeller, K. D. Acc. Chem. Res. 2020, 53, 135.
(h) Leech, M. C.; Lam, K. Acc. Chem. Res. 2020, 53, 121.
(i) Yamamoto, K.; Kuriyama, M.; Onomura, O. Acc. Chem. Res. 2020, 53, 105.
(j) Ackermann, L. Acc. Chem. Res. 2020, 53, 84.
(k) Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. Acc. Chem. Soc. 2020, 53, 72.
(l) Röckl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45.
(m) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
(n) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
(o) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
(p) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338.
(q) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
(r) Karkas, M. D. Chem. Soc. Rev. 2018, 47, 5786.
(s) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302.
[4] (a) Hou, Z.-W.; Xu, H.-C. Chin. J. Chem. 2020, 38, 394.
(b) Ye, Z.; Zhang, F. Chin. J. Org. Chem. 2020, 40, 241(in Chinese). (叶增辉, 张逢质, 有机化学, 2020, 40, 241.)
(c) Qian, X.-Y.; Xiong, P.; Xu, H.-C. Acta Chim. Sinica 2019, 77, 879(in Chinese). (钱向阳, 熊鹏, 徐海超, 化学学报, 2019, 77, 879.)
(d) Yang, Q.-L.; Wang, X.-Y.; Weng, X.-J.; Yang, X.; Xu, X.-T.; Tong, X.; Fang, P.; Wu, X.-Y.; Mei, T.-S. Acta Chim. Sinica 2019, 77, 866(in Chinese). (杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866.)
(e) Zhang, H. Tang, R.; Shi, X.; Xie, L.; Wu, J. Chin. J. Org. Chem. 2019, 39, 1837(in Chinese). (张怀远, 唐蓉萍, 石星丽, 颉林, 伍家卫, 有机化学, 2019, 39, 1837.)
(f) Feng, E.-Q.; Hou, Z.-W.; Xu, H.-C. Chin. J. Org. Chem. 2019, 39, 1424(in Chinese). (冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.)
(g) Zhou, Z.; Yuan, Y.; Cao, Y.; Qiao, J.; Yao, A.; Zhao, J.; Zou, W. Chen, W.; Lei, A. Chin. J. Chem. 2019, 37, 611.
(h) Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Chin. J. Chem. 2019, 37, 547.
(i) Hou, Z.-W.; Yan, H.; Song, J.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909.
(j) Wu, Y.; Xi, Y.; Zhao, M.; Wang, S. Chin. J. Org. Chem. 2018, 38, 2590(in Chinese). (吴亚星, 席亚超, 赵明, 王思懿, 有机化学, 2018, 38, 2590.)
[5] (a) Chang, X.; Zhang, Q.; Guo, C. Angew. Chem., Int. Ed. 2020, 59, 12612.
(b) Ghosh, M.; Shinde, V. S.; Rueping, M. Beilstein J. Org. Chem. 2019, 15, 2710.
(c) Lin, Q.; Li, L.; Luo, S. Chem. Eur. J. 2019, 25, 10033.
[6] Seebach, D.; Oei, H. A. Angew. Chem., Int. Ed. 1975, 14, 634.
[7] (a) Louafi, F.; Moreau, J.; Shahane, S.; Golhen, S.; Roisnel, T.; Sinbandhit, S.; Hurvois, J.-P. J. Org. Chem. 2011, 76, 9720.
(b) Feroci, M.; Inesi, A.; Orsini, M.; Palombi, L. Org. Lett. 2002, 4, 2617.
[8] (a) Kodama, Y.; Fujiwara, A.; Kawamoto, H.; Ohta, N.; Kitani, A.; lto, S. Chem. Lett. 2001, 30, 240.
(b) Horner, L.; Degner, D. Tetrahedron Lett. 1971, 12, 1241.
[9] (a) Shiigi, H.; Mori, H.; Tanaka, T.; Demizu, Y.; Onomura, O. Tetrahedron Lett. 2008, 49, 5247.
(b) Kuroboshi, M.; Yoshihisa, H.; Cortona, M. N.; Kawakami, Y.; Gao, Z.; Tanaka, H. Tetrahedron Lett. 2000, 41, 8131.
(c) Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.; Osa, T.; Bobbitt, J. M. Chem. Commun. 1999, 1983.
[10] (a) Kashiwagi, Y.; Kurashima, F.; Chiba, S.; Anzai, J.; Osa, T.; Bobbitt, J. M. Chem. Commun. 2003, 114.
(b) Moutet, J. C.; Duboc-Toia, C.; Ménage, S.; Tingry, S. Adv. Mater. 1998, 10, 665.
(c) Komori, T.; Nonaka, T. J. Am. Chem. Soc. 1984, 106, 2656.
(d) Firth, B. E.; Miller, L. L. J. Am. Chem. Soc. 1976, 98, 8272.
(e) Watkins, B. F.; Behling, J. R.; Kariv, E.; Miller, L. L. J. Am. Chem. Soc. 1975, 97, 3549.
[11] Gourley, R. N.; Grimshaw, J.; Millar, P. G. Chem. Commun. 1967, 1278.
[12] (a) Kobayashi, S.; Sugiura, M. Adv. Synth. Catal. 2006, 348, 1496.
(b) Lohray, B. B. Tetrahedron:Asymmetry 1992, 3, 1317.
[13] (a) Sugimoto, H.; Kitayama, K.; Mori, S.; Itoh, S. J. Am. Chem. Soc. 2012, 134, 19270.
(b) Metin, O.; Alp, N. A.; Akbayrak, S.; Bicer, A.; Gultekin, M. S.; Ozkar, S.; Bozkaya, U. Green Chem. 2012, 14, 1488.
(c) Sugimoto, H.; Kitayama, K.; Mori, S.; Itoh, S. J. Am. Chem. Soc. 2012, 134, 19270.
[14] (a) Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2024.
(b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
(c) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
[15] Amundsen, R.; Balko, E. N. Appl. J. Electrochem. 1992, 22, 810.
[16]Torii, S.; Liu, P.; Tanaka, H. Chem. Lett. 1995, 24, 319.
[17] Torii, S.; Liu, P.; Bhuvaneswari, N.; Amatore, C.; Jutand, A. J. Org. Chem. 1996, 61, 3055.
[18] Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
[19] Guo, P.; Wong, K.-Y. Electrochem. Commun. 1999, 1, 559.
[20] Tanaka, H.; Kuroboshi, M.; Takeda, H.; Kanda, H.; Torii, S. J. Electroanal. Chem. 2001, 507, 75.
[21] Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480.
[22] Minato, D.; Arimoto, H.; Nagasue, Y.; Demizu, Y.; Onomura, O. Tetrahedron. 2008, 64, 6675.
[23] Onomura, O.; Arimoto, H.; Matsumura, Y.; Demizu, Y. Tetrahedron Lett. 2007, 48, 8668.
[24] Shono, T.; Hamaguchi, H.; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264.
[25] (a) Jones, A. M.; Banks, C. E. Beilstein J. Org. Chem. 2014, 10, 3056.
(b) Onomura, O. Heterocycles 2012, 85, 2111.
(c) Shono, T. Top. Curr. Chem. 1988, 148, 1.
[26] Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[27] (a) D'Oca, M. G. M.; Pilli, R. A.; Pardini, V. L.; Curi, D.; Comni-nos, F. C. M. J. Braz. Chem. Soc. 2001, 12, 507.
(b) Sierecki, E.; Errasti, G.; Martens, T.; Royer, J. Tetrahedron 2010, 66, 10002.
(c) Lee, D.-S. Tetrahedron:Asymmetry 2009, 20, 2014.
(d) Shankaraiah, N.; Pilli, R. A.; Santos, L. S. Tetrahedron Lett. 2008, 5098.
(e) Zelgert, M.; Nieger, M.; Lennartz, M.; Steckhan, E. Tetrahedron 2002, 58, 2641.
(f) Matsumura, Y.; Kanda, Y.; Shirai, K.; Onomura, O.; Maki, T. Tetrahedron 2000, 56, 7411.
[28]Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.
[29] Gao, P.-S.; Weng, X.-J.; Wang, Z.-H.; Zheng, C.; Sun, B.; Chen, Z.-H.; You, S.-L.; Mei, T.-S. Angew. Chem., Int. Ed. 2020, 59, 15254.
[30] (a) Lennox, A. J. J.; Geos, S. L.; Webster, M. P.; Koolman, H. F.; Djuric, S. W.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 11227.
(b) Wang, F.; Rafiee, M.; Stahl, S. S. Angew. Chem., Int. Ed. 2018, 57, 6686.
(c) Wu, Y.; Yi, H.; Lei, A. ACS Catal. 2018, 8, 1192.
(d) Li, C.; Zeng, C.-C.; Hu, L.-M.; Yang, F.-L.; Yoo, S. J.; Little, R. D. Electrochim. Acta 2013, 114, 560.
(e) Cao, Y.; Suzuki, K.; Tajima, T.; Fuchigami, T. Tetrahedron 2005, 6854.
[31] Ryan, M. C.; Whitemire, L. D.; Mccann, S. D.; Stahl, S. S. Inorg. Chem. 2019, 58, 10194.
[32]Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406.
[33] Huang, X.; Zhang, Q.; Lin, J.; Harms, K.; Meggers, E. Nat. Catal. 2019, 2, 34.
[34] Zhang, Q.; Chang, X.; Peng, L.; Guo, C. Angew. Chem., Int. Ed. 2019, 58, 6999.
[35] Lu, P.; Jackson, J. J.; Eickhoff, J. A.; Zakarian, A. J. Am. Chem. Soc. 2015, 137, 656.
[36] Dhawa, U.; Tian, C.; Wdowik, T.; Oliveira, J. C. A.; Hao, J.; Ackermann, L. Angew. Chem., Int. Ed. 2020, 59, 13451.
[37] Chen, B.-L.; Zhu, H.-W.; Xiao, Y.; Sun, Q.-L.; Wang, H.; Lu, J.-X. Electrochem. Commun. 2014, 42, 55.
[38] Jiao, K.-J.; Li, Z.-M.; Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2018, 5, 2244.
[39] Franco, D.; Riahi, A.; Hénin, F.; Muzart, J.; Duñach, E. Eur. J. Org. Chem. 2002, 2257.
[40] DeLano, T. J.; Reisman, S. E. ACS Catal. 2019, 9, 6751.
[41] Qiu, H.; Shuai, B.; Wang, Y.-Z.; Liu, D.; Chen, Y.-G.; Gao, P.-S.; Ma, H.-X.; Chen, S.; Mei, T.-S. J. Am. Chem. Soc. 2020, 142, 9872.
文章导航

/