综述与进展

立体选择性烯烃复分解反应的研究及应用

  • 王溯 ,
  • 张友璐 ,
  • 巴妍妍 ,
  • 张京玉 ,
  • 孙德梅
展开
  • 河南中医药大学药学院 郑州 450046

收稿日期: 2020-03-23

  修回日期: 2020-05-10

  网络出版日期: 2020-05-28

基金资助

河南中医药大学创新人才计划(No.2014XCXRC01)及河南中医药大学省基本科研业务(No.2014KYYWF-ZZCX3-05)资助项目.

Study and Applications of Stereoselective Olefin Metathesis Reactions

  • Wang Su ,
  • Zhang Youlu ,
  • Ba Yanyan ,
  • Zhang Jingyu ,
  • Sun Demei
Expand
  • College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046

Received date: 2020-03-23

  Revised date: 2020-05-10

  Online published: 2020-05-28

Supported by

Project supported by the Science & Technology Innovation Talents of Henan University of Chinese Medicine (No. 2014XCXRC01) and the Henan University of Chinese Medicine, Provincial Scientific Research Business (No. 2014KYYWF-ZZCX3-05).

摘要

烯烃复分解反应是基于钌卡宾催化的形成碳碳双键的重要反应之一,近年来关于立体选择性烯烃复分解反应的研究越来越多.综述了近年来基于钌催化的立体选择性烯烃复分解反应,包括金属钌催化剂的种类、演化、立体选择性研究进展及其在不对称合成中的应用.重点介绍了近十年来钌催化烯烃复分解反应类型及其在不对称合成中的应用研究进展,并对今后的发展做出展望.

本文引用格式

王溯 , 张友璐 , 巴妍妍 , 张京玉 , 孙德梅 . 立体选择性烯烃复分解反应的研究及应用[J]. 有机化学, 2020 , 40(9) : 2725 -2741 . DOI: 10.6023/cjoc202003054

Abstract

Olefin metathesis has been one of the most important methods to construct carbon-carbon double bonds, which has been catalyzed by ruthenium carbene. Investigations in olefin metathesis have focused on stereoselective transformations in recent years. The research progress on the applications of stereoselective olefin metathesis reactions catalyzed by ruthenium carbene complexes is reviewed. The advancements in stereoselectivity of olefin metathesis are described in detail, and the categories and improvement of ruthenium catalysts are also introduced over the past decade. Finally, the future development for olefin metathesis is further evaluated as well.

参考文献

[1] Jean-Louis, H. P.; Chauvin, Y. Makromol. Chem. 1971, 141, 161.
[2] Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2012, 134, 693.
[3] Marx, V. M.; Herbert, M. B.; Keitz, B. K.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 94.
[4] Rosebrugh, L. E.; Herbert, M. B.; Marx, V. M.; Keitz, B. K.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 1276.
[5] Ahmed, T. S.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2017, 56, 11213.
[6] Khan, R. K. M.; Zhugralin, A. R.; Torker, S.; O'Brien, R. V.; Lombardi, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 12438.
[7] Khan, R. K. M.; O'Brien, R. V.; Torker, S.; Li, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 12774.
[8] Hartung, J.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 10183.
[9] Luo, S. X.; Cannon, J. S.; Taylor, B. L. H.; Engle, K. M.; Houk, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2016, 138, 14039.
[10] Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 9686.
[11] Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525.
[12] Bronner, S. M.; Herbert, M. B.; Patel, P. R.; Marx, V. M.; Grubbs, R. H. Chem. Sci. 2014, 5, 4091.
[13] Cannon, J. S.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2013, 52, 9001.
[14] Quigley, B. L.; Grubbs, R. H. Chem. Sci. 2014, 5, 501.
[15] Herbert, M. B.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2015, 54, 2.
[16] Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus, M. S.; Hoveyda, A. H. Nature 2015, 517, 181.
[17] Tiede, S.; Berger, A.; Schlesiger, D.; Rost, D.; Lühl, A.; Blechert, S. Angew. Chem.. Int. Ed. 2010, 49, 3972.
[18] Miyazaki, H.; Herbert, M. B.; Liu, P.; Dong, X.; Xu, X.; Keitz, B. K.; Ung, T.; Mkrtumyan, G.; Houk, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 5848.
[19] Johns, A. M.; Ahmed, T. S.; Jackson, B. W.; Grubbs, R. H.; Pederson, R. L. Org. Lett. 2016, 18, 772.
[20] Montgomery, T. P.; Ahmed, T. S.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2017, 56, 11024.
[21] Khan, R. K. M.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2013, 135, 10258.
[22] Ahmed, T. S.; Grubbs, R. H. J. Am. Chem. Soc. 2017, 139, 1532.
[23] Ahmed, T. S.; Grubbs, R. H. J. Am. Chem. Soc. 2017, 139, 1532.
[24] Xu, C. F.; Shen, X.; Hoveyda, A. H. J. Am. Chem. Soc. 2017, 139, 10919.
[25] Xu, C. F.; Liu, Z. X.; Torker, S.; Shen, X.; Xu, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2017, 139, 15640.
[26] Ahmed, T. S.; Montgomery, T. P.; Grubbs, R. H. Chem. Sci. 2018, 9, 3580.
[27] Torker, S.; Khan, R. K. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 3439.
[28] Khan, R. K. M.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 14337.
[29] Mikus, M. S.; Torker, S.; Xu, C.; Li, B.; Hoveyda, A. H. Organometallics 2016, 35, 3878.
[30] Montgomery, T. P.; Grandner, J. M.; Houk, K. N.; Grubbs, R. H. Organometallics 2017, 36, 3940.
[31] Dumas, A.; Müller, D. S.; Curbet, I.; Toupet, L.; Rouen, M.; Baslé, O.; Mauduit, M. Organometallics 2018, 37, 829.
[32] Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225.
[33] Stenne, B.; Timperio, J.; Savoie, J.; Dudding, T.; Collins, S. K. Org. Lett. 2010, 12, 2032.
[34] Gawin, R.; Pieczykolan, M.; Malinska, M.; Wozniak, K.; Grela, K. Synlett 2013, 24, 1250.
[35] Paradiso, V.; Bertolasi, V.; Grisi, F. Organometallics 2014, 33, 5932.
[36] Paradiso, V.; Bertolasi, V.; Costabile, C.; Grisi, F. Dalton Trans. 2016, 45, 561.
[37] Hartung, J.; Dornan, P. K.; Grubbs, R. H. J. Am. Chem. Soc. 2014, 136, 13029.
[38] Kannenberg, A.; Rost, D.; Eibauer, S.; Tiede, S.; Blechert, S. Angew. Chem.. Int. Ed. 2011, 50, 3299.
[39] Hartung, J.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2014, 53, 3885.
[40] Berlin, J. M.; Goldberg, S. D.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2006, 45, 7591.
[41] Werrel, S.; Walker, J. C. L.; Donohoe, T. J. Tetrahedron Lett. 2015, 56, 5261.
[42] Montgomery, T. P.; Johns, A. M.; Grubbs, R. H. Catalysts 2017, 7, 87.
[43] Ogba, O. M.; Warner, N. C.; O'Leary, D. J.; Grubbs, R. H. Chem. Soc. Rev. 2018, 47, 4510.
[44] Potukuchi, H. K.; Colomer, I.; Donohoe, T. J. Adv. Heterocycl. Chem. 2016, 120, 43.
[45] Hoveyda, A. H.; Malcolmson, S. J.; Meek, S. J.; Zhugralin, A. R. Angew. Chem.. Int. Ed. 2010, 49, 34.
[46] Donohoe, T. J.; Jones, C. R.; Barbosa, L. C. A. J. Am. Chem. Soc. 2011, 133, 16418.
[47] Song, W.; Wang, Y.; Qu, J.; Lin, Q. J. Am. Chem. Soc. 2008, 130, 9654.
[48] Van Hest, J. C. M.; Kiick, K. L.; Tirrell, D. A. J. Am. Chem. Soc. 2000, 122, 1282.
[49] Bernardes, G. J. L.; Chalker, J. M.; Errey, J. C.; Davis, B. G. J. Am. Chem. Soc. 2008, 130, 5052.
[50] Lin, Y. A.; Boutureira, O.; Lercher, L.; Bhushan, B.; Paton, R. S.; Davis, B. G. J. Am. Chem. Soc. 2013, 135, 12156.
[51] Zhu, Y.; van der Donk, W. A. Org. Lett. 2001, 3, 1189.
[52] Mangold, S. L.; O'Leary, D. J.; Grubbs, R. H. J. Am. Chem. Soc. 2014, 136, 12469.
[53] Mangold, S. L.; Grubbs, R. H. Chem. Sci. 2015, 6, 4561.
[54] Silverstein, R. M.; Brownlee, R. G.; Bellas, T. E.; Wood, D. L.; Browne, L. E. Science 1968, 159, 889.
[55] Henrick, C. A. Tetrahedron 1977, 33, 1845.
[56] Ortiz, A.; Quesada, A.; Sanchez, A. J. Chem. Ecol. 2004, 30, 991.
[57] Howse, P. E.; Stevens, I. D. R.; Jones, O. T. Insect Pheromones and their Use in Pest Management, Springer, Dordrecht, Netherlands, 1998.
[58] Herbert, M. B.; Marx, V. M.; Pederson, R. L.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2013, 52, 310.
[59] Ando, T.; Inomata, S.; Yamamoto, M. In Topics in Current Chemistry, Ed.:Schulz, S., Springer, Berlin/Heidelberg, 2004, pp. 51~96.
[60] Ciminiello, P.; Fattorusso, E.; Forino, M.; Di Rosa, M.; Ianaro, A.; Poletti, R. J. Org. Chem. 2001, 66, 578.
[61] Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Di Rosa, M.; Ianaro, A.; Poletti, R. J. Am. Chem. Soc. 2002, 124, 13114.
[62] Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Di Meglio, P.; Ianaro, A.; Poletti, R. Tetrahedron 2004, 60, 7093.
[63] Chung, W.; Carlson, J. S.; Bedke, D. K.; Vanderwal, C. D. Angew. Chem.. Int. Ed. 2013, 52, 10052.
[64] Dornan, P. K.; Wickens, Z. K.; Grubbs, R. H. Angew. Chem.. Int. Ed. 2015, 54, 7134.
[65] Dornan, P. K.; Lee, D.; Grubbs, R. H. J. Am. Chem. Soc. 2016, 138, 6372.
[66] Yu, M.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem.. Int. Ed. 2014, 53, 1.
[67] Wright, A. E.; Botelho, J. C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P. J.; Pitts, T. P.; Pomponi, S. A.; Reed, J. K. J. Nat. Prod. 2007, 70, 412.
[68] Youngsaye, W.; Lowe, J. T.; Pohlki, F.; Ralifo, P.; Panek, J. S. Angew. Chem.. Int. Ed. 2007, 46, 9211.
[69] Custar, D. W.; Zabawa, T. P.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 804.
[70] Woo, S. K.; Kwon, M. S.; Lee, E. Angew. Chem.. Int. Ed. 2008, 47, 3242.
[71] Fuwa, H.; Naito, S.; Goto, T.; Sasaki, M. Angew. Chem.. Int. Ed. 2008, 47, 4737.
[72] Paterson, I.; Miller, N. A. Chem. Commun. 2008, 4708.
[73] Guinchard, X.; Roulland, E. Org. Lett. 2009, 11, 4700.
[74] Fuwa, H.; Saito, A.; Sasaki, M. A. Angew. Chem.. Int. Ed. 2010, 49, 3041.
[75] Yu, M.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem.. Int. Ed. 2015, 54, 215.
[76] De Léséleuc, M.; Godin, É.; Parisien-Collette, S.; Lévesque, A.; Collins, S. K. J. Org. Chem. 2016, 81, 6750.
[77] Zhang, B.; Wang, Y.; Yang, S. P.; Zhou, Y.; Wu, W. B.; Tang, W.; Zuo, J. P.; Li, Y.; Yue, J. M. I. J. Am. Chem. Soc. 2012, 134, 20605.
[78] Li, J. M.; Ahmed, T. S.; Xu, C.; Stoltz, B. M.; Grubbs, R. H. J. Am. Chem. Soc. 2019, 141, 154.
文章导航

/