研究论文

Ming-Phos/铜催化的甲亚胺叶立德与三氟甲基烯酮的不对称[3+2]环加成反应

  • 武力左 ,
  • 张峰源 ,
  • 章振涛 ,
  • 尚垒 ,
  • 刘宇
展开
  • 长春工业大学化学与生命科学学院 材料科学高等研究院 吉林长春 130012

收稿日期: 2020-04-25

  修回日期: 2020-04-29

  网络出版日期: 2020-05-28

基金资助

吉林省科技发展计划(No.20170520137JH)和国家自然科学基金青年基金(No.21602015)资助项目.

Ming-Phos/Copper(I)-Catalyzed Asymmetric Intermolecular[3+2] Cycloaddition of Azomethine Ylides with Trifluoromethyl Enones

  • Wu Lizuo ,
  • Zhang Fengyuan ,
  • Zhang Zhentao ,
  • Shang Lei ,
  • Liu Yu
Expand
  • College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012

Received date: 2020-04-25

  Revised date: 2020-04-29

  Online published: 2020-05-28

Supported by

Project supported by the Science and Technology Development Project of Jilin Province (No. 20170520137JH) and the National Natural Science Foundation of China for Youth (No. 21602015).

摘要

含有三氟甲基的手性吡咯烷骨架是许多天然产物和药物的重要中间体,其高效的不对称合成方法是有机化学研究热点之一.通过Ming-Phos手性配体实现了铜催化的甲亚胺叶立德与β-三氟甲基-αβ-不饱和酮的不对称[3+2]环加成反应,以较高的产率和对映选择性合成了一系列含三氟甲基的手性吡咯烷化合物(ee值高达98%,产率高达99%).该方法条件温和,操作简单,配体简单易得,且具有良好的底物普适性和官能团兼容性.

本文引用格式

武力左 , 张峰源 , 章振涛 , 尚垒 , 刘宇 . Ming-Phos/铜催化的甲亚胺叶立德与三氟甲基烯酮的不对称[3+2]环加成反应[J]. 有机化学, 2020 , 40(8) : 2460 -2467 . DOI: 10.6023/cjoc202004038

Abstract

Chiral pyrrolidine skeletons containing trifluoromethyl group are core structural motifs in many natural products and medicines. As a consequence, extensive studies have been conducted on the exploitation of efficient methods for the asymmetric synthesis of such compounds. In this paper, Ming-Phos/Cu(I)-catalyzed asymmetric intermolecular[3+2] cycloaddition reaction of azomethine ylides and β-trifluoromethyl-α,β-unsaturated ketone was reported. A broad substrate scope was observed with high yield and enantioselectivity (up to 99% yield and 98% ee). The method is featured by its mild conditions, simple operation, easily available ligands and good functional group compatibility.

参考文献

[1] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
(c) Ismail, F. M. D. J. Fluorine Chem. 2002, 118, 27.
(d) Bégué, J.-P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992.
(e) Petrov, V. A. Fluorinated Heterocyclic Compounds:Synthesis, Chemistry, and Applications, John Wiley & Sons, Inc, Hoboken, NJ, 2009.
(f) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, John Wiley & Sons, Ltd, Chichester, 2009.
(g) Zhu, W.; Wang, J.; Wang, S. J. Fluorine Chem. 2014, 167, 37.
(h) Zhang, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34, 662(in Chinese). (张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.)
(i) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(j) Ji, X. M.; Shi, G. F.; Zhang, Y. H. Chin. J. Org. Chem. 2019, 39, 929(in Chinese). (季小明, 史广法, 张扬会, 有机化学, 2019, 39, 929.)
(k) Meng, Y.; Li, E.; Zhang, Y.; Liu, S.; Bao, C.; Yang, P.; Zhang, L.; Zhang, D.; Wang, J.; Chen, Y.; Li, N.; Xin, J.; Zhao, P.; Ke, Y.; Zhang, Q.; Liu, H. Chin. J. Org. Chem. 2019, 39, 2541(in Chinese). (孟娅琪, 李二冬, 张洋, 刘栓, 包崇男, 杨鹏, 张路野, 张丹青, 王继宽, 陈雅欣, 栗娜, 辛景超, 赵培荣, 可钰, 张秋荣, 刘宏民, 有机化学, 2019, 39, 2541.)
(l) Hu, J.; Ding, K.-L. Acta Chim. Sinica 2018, 76, 905(in Chinese). (胡金波, 丁奎岭, 化学学报, 2018, 76, 905.)
[2] (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(b) Li, Y.; Wu, Y.; Li, G.-S.; Wang, X.-S. Adv. Synth. Catal. 2014, 356, 1412.
(c) Jeschke, P. ChemBioChem 2004, 5, 570.
(d) O'Hagan, D.; Harper, D. B. J. Fluorine Chem. 1999, 100, 127.
(e) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
(f) Li, Y.-Y.; Wang, Y.; Zhu, L.; Qu, L.; Lan, Y. Chin. J. Org. Chem. 2019, 39, 38(in Chinese). (李园园, 王元鉴, 朱磊, 屈凌波, 蓝宇, 有机化学, 2019, 39, 38.)
(g) Jin, W.; Lu, G.; Li, Y.; Huang, X. Acta Chim. Sinica 2018, 76, 739(in Chinese). (金维则, 陆国林, 李永军, 黄晓宇, 化学学报, 2018, 76, 739.)
(h) Zhang, J.; Wu, Z.; Xie, F.; Zhang, W. Chin. J. Org. Chem. 2018, 38, 1319(in Chinese). (张金刚, 吴正兴, 谢芳, 张万斌, 有机化学, 2018, 38, 1319.)
(i) Xu, H.; Tan, Z.; Zhang, Y.; Fan, W. Guangzhou Chem. Ind. 2019, 47, 42(in Chinese). (许桓, 谭政, 张艳, 范为正, 广州化工, 2019, 47, 42.)
[3] (a) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
(b) Purse, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
(e) Prakash, G. K. S.; Wang, F. Chim. Oggi 2012, 30, 30.
(f) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785(in Chinese). (王江, 柳红, 有机化学, 2011, 31, 1785.)
(g) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 9322.
(h) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(i) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Asian J. 2012, 7, 1744.
(j) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 5048.
(k) Ye, Y.; Sanford, M. S. Synlett 2012, 2005.
(l) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815(in Chinese). (卿凤翎, 有机化学, 2012, 32, 815.)
(m) Pan, F.; Shi, Z. Acta Chim. Sinica 2012, 70, 1679(in Chinese). (潘菲, 施章杰, 化学学报, 2012, 70, 1679.)
(n) Wang, X.; Zhang, Y.; Wang, J. Sci. Sin.:Chim. 2012, 42, 1417(in Chinese). (王兮, 张艳, 王剑波, 中国科学:化学, 2012, 42, 1417.)
(o) Chen, P.; Liu, G. Synthesis 2013, 45, 2929.
(p) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(q) Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585.
(r) Wang, G.; He, X.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2014, 34, 837(in Chinese). (王光祖, 赫侠平, 戴建军, 许华建, 有机化学, 2014, 34, 837.)
(s) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
(t) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(u) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[4] (a) Kukhar, V. P.; Soloshonok, V. A. Fluorine Containing Amino Acids——Synthesis and Properties, Wiley, Chichester, 1995.
(b) Nie, J.; Guo, H.-C.; Cahard D.; Ma, J.-A. Chem. Rev. 2010, 111, 455.
(c) Hiyama, T. Organofluorine Compounds:Chemistry and Applications, Springer, New York, 2000.
(d) Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity and Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.
(e) Bégué, J. P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VCH, Weinheim, 2008.
(f) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
(g) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry:From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
[5] For recent reviews about 1,3-dipolar cycloadditions of iminoesters, see:(a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.
(b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887.
(c) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Chem. Rev. 2008, 108, 3174.
(d) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132.
(e) Engels, B.; Christl, M. Angew. Chem., Int. Ed. 2009, 48, 7968.
(f) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.
(g) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703.
(h) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492.
(i) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660.
(j) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.
(k) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
(l) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37, 1166.
(m) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
[6] (a) Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am. Chem. Soc. 2011, 133, 20750.
(b) Yamashita, Y.; Imaizumi, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 4893.
(c) Xu, H.; Golz, C.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2016, 55, 7761.
(d) Pascual-Escudero, A.; de Cózar, A.; Cossío, F. P.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2016, 55, 15334.
(e) Yamashita, Y.; Guo, X.-X.; Takashita, R.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 3262.
(f) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.
(g) Potowski, M.; Schürmann, M.; Preut, H.; Antonchick, A. P.; Waldmann, H. Nat. Chem. Biol. 2012, 8, 428.
(h) Awata, A.; Arai, T. Angew. Chem., Int. Ed. 2014, 53, 10462.
(i) Narayan, R.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2013, 52, 12892.
(j) Antonchick, A. P.; Gerding-Reimers, C.; Catarinella, M.; Schürmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Nat. Chem. 2010, 2, 735.
(k) Liu, T.-L.; He, Z.-L.; Wang, C.-J. Chem. Commun. 2011, 47, 9600.
(l) Li, Q.; Huang, R.; Wang, C.-J. Acta Chim. Sinica 2014, 72, 830(in Chinese). (李清华, 黄蓉, 王春江, 化学学报, 2014, 72, 830.)
(m) Xu, S.; Zhang, Z. M.; Xu, B.; Liu, B.; Liu, Y. Zhang, J. J. Am. Chem. Soc. 2018, 140, 2272.
(n) Xu, B.; Zhang, Z. M.; Liu, B.; Xu, S.; Zhou, L. J.; Zhang, J. Chem. Commun., 2017, 53, 8152.
(o) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W Angew. Chem., Int. Ed. 2015, 54, 5255.
(p) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979.
(q) Feng, B.; Chen, J.-R.; Yang, Y.-F.; Lu, B.; Xiao, W. J. Chem. Eur. J. 2018, 24, 1714.
[7] (a) Zhi, Y.; Zhao, K.; Liu, Q.; Wang, A.; Enders, D. Chem. Commun. 2016, 52, 14011.
(b) Huang, B.; Li, C.; Wang, H.; Wang, C.; Liu, L.; Zhang, J., Org. Lett. 2017, 19, 5102.
(c) Wang, H.; Zhang, L.; Tu, Y.; Xiang, R.; Guo, Y.-L.; Zhang, J., Angew. Chem. Int. Ed. 2018, 57, 15787.
(d) Ponce, A.; Alonso, I.; Adrio, J.; Carretero, J. C. Chem.-Eur. J. 2016, 22, 4952.
(e) Dong, Z.; Zhu, Y.; Li, B.; Wang, C.; Yan, W.; Wang, K.; Wang, R. J. Org. Chem. 2017, 82, 3482.
[8] (a) Bonnet-Delpon, D.; Chennoufi, A.; Rock, M. H. Bull. Soc. Chim. Fr. 1985, 132, 402.
(b) Bégué, J.-P.; Bonnet-Delpon, D.; Chennoufi, A.; Ourévitch, M. K.; Ravikumar, S.; Rock, A. H. J. Fluorine Chem., 2001, 107, 275.
[9] (a) Li, Q.-H.; Tong, M.-C.; Li, J.; Tao, H.-Y.; Wang, C.-J. Chem. Commun., 2011, 47, 11110.
(b) Li, Q.-H,; Xue, Z.-Y,; Li, J,; Tao, H.-Y,; Wang, C.-J. Tetrahedron Lett. 2012, 53, 3650.
[10] Tang, L.-W.; Zhao, B.-J.; Dai, L.; Zhang, M.; Zhou, Z.-M. Chem.-Asian J. 2016, 11, 2470.
[11] For applications of Ming-Phos in asymmetric catalysis, see:(a) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X. L.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 4350.
(b) Chen, M.; Zhang, Z.-M.; Yu, Z.; Qiu, H.; Ma, B.; Wu, H.-H.; Zhang, J. ACS Catal. 2015, 5, 7488.
(c) Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 6324.
(d) Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y.; Zhang, J. ACS Catal. 2017, 7, 210.
(e) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018.
(f) Wang, Y.; Zhang, Z.-M.; Liu, F.; He, Y.; Zhang, J. Org. Lett. 2018, 20, 6403.
(g) Zhou, L.; Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang Z.-M.; Zhang, J. Angew. Chem., Int. Ed. 2020, 59, 2769.
(h) Zhou, L.; Xu, B.; Ji, D.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. 2020, 38, 577.
[12] For applications of Ming-Phos in[3+2] cycloadditions, see:(a) Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y. Zhang, J. ACS Catal. 2017, 7, 210.
(b) Liu, B,; Zhang, Z.-M.; Xu, B.; Xu, S,; Wu, H.-H,; Zhang, J. Adv. Synth. Catal. 2018, 360, 2144.
(c) Zhang, R.; Xu, B.; Zhang, Z.-M.; Zhang, J. Acta Chim. Sinica 2020, 78, 245(in Chinese). (张荣华, 许冰, 张展鸣, 张俊良, 化学学报, 2020, 78, 245.)
[13] Wu, Y.; Xu, B.; Liu, B.; Zhang, Z. M.; Liu, Y. Org. Biomol. Chem. 2019, 17, 1395.
文章导航

/