研究论文

纳米Cu-CuFe2O4在乙醇中催化选择性还原α,β,γ,δ-不饱和羰基化合物

  • 从屹康 ,
  • 曾祥华
展开
  • 嘉兴学院生物与化学工程学院 浙江嘉兴 314001

收稿日期: 2020-03-20

  修回日期: 2020-05-11

  网络出版日期: 2020-05-29

基金资助

浙江省自然科学基金(No.LY17B030011)资助项目.

Nano Cu-CuFe2O4-Catalyzed Selective Reduction of α,β,γ,δ-Unsaturated Carbonyls in Alcohol Medium

  • Cong Yikang ,
  • Zeng Xianghua
Expand
  • College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001

Received date: 2020-03-20

  Revised date: 2020-05-11

  Online published: 2020-05-29

Supported by

Project supported by the National Natural Science Foundation of Zhejiang Province (No. LY17B030011).

摘要

纳米Cu-CuFe2O4通过质子去硼策略能高效催化αβγδ-不饱和酮、酯和腈酯发生1,4-还原.与已报道的方法相比,该方法具有以乙醇溶剂为氢源、催化剂量低(0.5 mol%)、催化剂可循环使用等优点.同时,研究了该催化体系的克级规模反应和反应机理.此外,也研究了还原产物(E)-γδ-不饱和羰基化合物的应用,如可转化生成3-丁烯-1-醇、3-丁烯-1-胺、γ-酮酸、环醚和环硝基酮.

本文引用格式

从屹康 , 曾祥华 . 纳米Cu-CuFe2O4在乙醇中催化选择性还原α,β,γ,δ-不饱和羰基化合物[J]. 有机化学, 2020 , 40(8) : 2411 -2418 . DOI: 10.6023/cjoc202003049

Abstract

An efficient Cu-CuFe2O4 nanoparticle-catalyzed protodeboronation strategy has been developed for the chemoselective 1,4-reduction of α,β,γ,δ-unsaturated ketones, carboxylic ester and cyano-ester. This protocol has the advantageous of the use of alcohol as hydrogen source and solvent, low catalyst loading (0.5 mol%), and excellent catalyst recyclability. Additionally, the Cu-CuFe2O4 catalyst has shown excellent performance in gram-scale reactions. Furthermore, the catalytic mechanism has also been discussed. The reactivity of (E)-γ,δ-unsaturated carbonyl products, an important class of γ,δ-unsaturated alkenes, enables easy access to 3-buten-1-ols, 3-buten-1-amines, γ-keto acids, cyclic ethers, and cyclic nitrones.

参考文献

[1] (a) Smith, M. B.; March, J. March's Advanced Organic Chemistry:Reactions, Mechanisms, and Structure, John Wiley & Sons, Hoboken, NJ, 2007.
(b) Andersson, P. G.; Munslow, I. J. Modern Reduction Methods, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008.
[2] For selected examples, see:(a) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 936.
(b) Sasson, Y.; Blum, J. J. Org. Chem. 1975, 40, 1887.
(c) Li, W.; Wu, X-F. Eur. J. Org. Chem. 2015, 331.
(d) Ding, B.; Zhang, Z.; Liu, Y.; Sugiya, M.; Imamoto, T.; Zhang, W. Org. Lett. 2013, 15, 3690.
(e) Zhang, B.-H.; Shi, L.-X.; Guo, R.-X. Helv. Chim. Acta 2013, 96, 2152.
(f) Zhou, X.; Li, X.; Zhang, W.; Chen, J. Tetrahedron Lett. 2014, 55, 5137.
[3] Nussim, M.; Mazur, Y.; Sondheimer, F. J. Org. Chem. 1964, 29, 1120.
[4] Ranu, B. C.; Samanta, S. J. Org. Chem. 2003, 68, 7130.
[5] Huang, X.; Hu, J.; Wu, M.; Wang, J.; Peng, Y.; Song, G. Green Chem. 2018, 20, 255.
[6] Zhou, Y.; Rao, C.; Song, Q. Org. Lett., 2016, 18, 4000.
[7] (a) An, K.; Somorjai, G. A. Catal. Lett. 2015, 145, 233.
(b) Singh, A. K.; Xu, Q. ChemCatChem 2013, 5, 652.
(c) Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely, C. J.; Hutchings, G. J. Chem. Soc. Rev. 2012, 41, 8099.
[8] Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
[9] Jin, C.; Wang, Y.; Wei, H.; Tang, H.; Liu, X.; Lu, T.; Wang, J. J. Mater. Chem. A 2014, 2, 11202.
[10] Yang, W.; Wei, L.; Yi, F.; Cai, M. Catal. Sci. Technol. 2016, 6, 4554.
[11] Wang, D.; Etienne, L.; Echeverria, M.; Moya, S.; Astruc, D. Chem.-Eur. J. 2014, 20, 4047.
[12] Jang, J.; Byun, S.; Kim, B. M.; Lee, S. Chem. Commun. 2018, 54, 3492.
[13] Zhang, L.; Li, P.; Liu, C.; Yang, J.; Wang M.; Zhang, L. Catal. Sci. Technol. 2014, 4, 1979.
[14] Polshettiwar, V.; Varma, R. S. Chem.-Eur. J. 2009, 15, 1582.
[15] Abu-Reziq, R.; Alper, H.; Wang, D.; Post, M. L. J. Am. Chem. Soc. 2006, 128, 5279.
[16] Mohan, B.; Park, J. C.; Park, K. H. ChemCatChem 2016, 8, 2345.
[17] Zeng, X.; Gong, C.; Guo, H.; Xu, H.; Zhang, J.; Xie, J. New J. Chem. 2018, 42, 17346.
[18] Perez-Mayoral, E.; Matos, I.; Fonseca, I.; Cejka, J. Chem.-Eur. J. 2010, 16, 12079.
[19] Francesco, I. N.; Cacciuttolo, B.; Pucheault, M.; Antoniotti, S. Green Chem. 2015, 17, 837.
[20] Ma, Z.; Xie, F.; Yu, H.; Zhang, Y.; Wu, X.; Zhang, W. Chem. Commun. 2013, 49, 5292.
[21] Peng, X.; Tong, B.; Hirao, H.; Chiba, S. Angew. Chem., Int. Ed. 2014, 53, 1959.
[22] Ding, W.; Song, Q. Org. Chem. Front. 2016, 3, 14.
[23] Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew. Chem., Int. Ed. 2012, 51, 12763.
[24] Zhou, X.-F.; Sun, Y.-Y.; Wu, Y.-D.; Dai, J.-J.; Xu, J.; Huang, Y.; Xu, H.-J. Tetrahedron 2016, 72, 5691.
[25] Belhomme, M., Wang, D., Szabó, K. J. Org. Lett. 2016, 18, 2503.
[26] Ranu, B. C., Samanta, S. J. Org. Chem. 2003, 68, 7130.
文章导航

/