研究论文

钯(II)催化共轭二烯的需氧氧化1,2-双乙酰氧基化反应

  • 居辰阳 ,
  • 吴正兴 ,
  • 李云艺 ,
  • 张万斌
展开
  • 上海交通大学化学化工学院 变革性分子前沿科学中心 上海市手性药物分子工程重点实验室 上海 200240

收稿日期: 2020-04-16

  修回日期: 2020-05-19

  网络出版日期: 2020-05-29

基金资助

上海市教育委员会(No.201701070002E00030)、上海市青年科技英才扬帆计划(No.19YF1421900)、上海市科学技术委员会(No.19JC1430100)和国家自然科学基金(Nos.21620102003,21831005,21901158,21991112)资助项目.

Palladium(II)-Catalyzed Aerobic 1,2-Diacetoxylation of Conjugated Dienes

  • Ju Chenyang ,
  • Wu Zhengxing ,
  • Li Yunyi ,
  • Zhang Wanbin
Expand
  • Shanghai Key Laboratory for Molecular Engineering and Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, 200240

Received date: 2020-04-16

  Revised date: 2020-05-19

  Online published: 2020-05-29

Supported by

Project supported by the Shanghai Municipal Education Commission (No. 201701070002E00030), the Shanghai Sailing Program (No. 19YF1421900), the Science and Technology Commission of Shanghai Municipality (No. 19JC1430100), and the National Natural Science Foundation of China (Nos. 21620102003, 21831005, 21901158, 21991112).

摘要

邻二醇类化合物在农药、手性医药以及精细化学品等方面具有重要的用途.发展了一种钯(II)催化共轭二烯的1,2-双乙酰氧基化的方法,利用简单易得的醋酸作为氧源,氧气作为氧化剂,高区域选择性地实现了共轭二烯的1,2-双乙酰氧基化反应.本方法对芳基、酯基和羰基等取代的共轭二烯具有良好的底物适应性,催化产物经过简单醇解或水解转化为邻二醇化合物,是一种高效合成邻二醇类化合物的新策略.

本文引用格式

居辰阳 , 吴正兴 , 李云艺 , 张万斌 . 钯(II)催化共轭二烯的需氧氧化1,2-双乙酰氧基化反应[J]. 有机化学, 2020 , 40(11) : 3925 -3933 . DOI: 10.6023/cjoc202004025

Abstract

1,2-Diols have important applications in pesticides, chiral medicines and fine chemicals. A Pd(II)-catalyzed 1,2-diacetoxylation method using readily available acetic acid as the oxygen source and oxygen as the oxidant was developed. For the 1,2-diacetoxylation of conjugated dienes, the reaction proceeds with high 1,2-regioselectivity. This protocol has good substrate scope for conjugated dienes possessing aryl-, ester-and carbonyl groups. The catalytic products can be transformed to 1,2-diols through simple alcoholysis or hydrolysis, therefore it is an efficient method for the synthesis of 1,2-diols.

参考文献

[1] (a) Borcherding, D. R.; Narayanan, S.; Hasobe, M.; McKee, J. G.; Keller, B. T.; Borchardt, R. T. J. Med. Chem. 1988, 31, 1729.
(b) Smith III, A. B.; Chen, S. S.; Nelson, F. C.; Reichert, J. M.; Salvatore, B. A. J. Am. Chem. Soc. 1995, 117, 12013.
(c) Kang, S. H.; Jeong, J. W.; Hwang, Y. S.; Lee, S. B. Angew. Chem., Int. Ed. 2002, 41, 1392.
(d) Ni, L.; Zhou, X.; Ma, J.; Zhang, X.-M.; Li, C.-J.; Li, L.; Yang, D.-J.; Shao, Y.-Y.; Zhou, S.-B.; Zhang, T.-T.; Zhang, D.-M. J. Asian. Nat. Prod. Res. 2015, 17, 615.
(e) Michael, H.; Arndt, N.; Sophia, W.; Thomas, H. J. Agric. Food Chem. 2016, 64, 2746.
(f) Mamdouh Nabil, S.; John Refaat, F.; Sachiko, S.; Hideaki, O.; Katsuyoshi, M.; Mohamed Salah, K. Nat. Med. 2017, 71, 321.
(g) Li, X.; Zhang, W.; Gao, S. Chin. J. Org. Chem. 2018, 38, 2185(in Chinese). (李晓军, 张万斌, 高栓虎, 有机化学, 2018, 38, 2185.)
[2] (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
(b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(c) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(d) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
(e) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736.
(f) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851.
(g) Mann, S. E.; Benhamou, L.; Sheppard, T. D. Synthesis 2015, 47, 3079.
(h) Kočovský, P.; Bäckvall, J.-E. Chem.-Eur. J. 2015, 21, 36.
(i) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787.
(j) Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S. Chem. Rev. 2018, 118, 2636.
(k) Tang, X.; Wu, W.; Zeng, W.; Jiang, H. Acc. Chem. Res. 2018, 51, 1092.
[3] (a) Ely, R. J.; Morken, J. P. Org. Lett. 2010, 12, 4348.
(b) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009, 131, 9134.
(c) Bäckvall, J.-E. In Metal Catalyzed Cross-Coupling Reactions, 2nd ed.; Eds.:De Meijere, A.; Diederich, F., Wiley-VCH, Weinheim, 2004, p. 479.
(d) Bäckvall, J.-E.; Andersson, P. G. J. Am. Chem. Soc. 1992, 114, 6374.
(e) Aranyos, A.; Szabó, K. J.; Bäckvall, J.-E. J. Org. Chem. 1998, 63, 2523.
(f) Itami, K.; Palmgren, A.; Thorarensen, A.; Bäckvall, J.-E. J. Org. Chem. 1998, 63, 6466.
(g) Verboom, R. C.; Persson, B. A.; Bäckvall, J.-E. J. Org. Chem. 2004, 69, 3102.
(h) Zhang, Z.; Mamba, T.; Yamamoto, E.; Murayama, H.; Ishida, T.; Honma, T.; Fujitani, T.; Tokunaga, M. Appl. Catal. B-Environ. 2019, 246, 100.
[4] (a) Sinha, S. C.; Keinan, E. J. Org. Chem. 1997, 62, 377.
(b) Zhang, Y.; Chu, G.; Cui, X.; Han, Z.; Dou, D.; Chen, Y.; Yu, X.; Li, C. Synlett 2010, 1118.
[5] (a) Kliman, L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew. Chem., Int. Ed. 2012, 51, 521.
(b) Toribatake, K.; Nishiyama, H. Angew. Chem., Int. Ed. 2013, 52, 11011.
(c) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem. Commun. 1997, 689.
[6] Qian, B.; Xiong, H.; Zhu, N.; Ye, C.; Jian, W.; Bao, H. Tetrahedron Lett. 2006, 57, 3400.
[7] (a) Huang, J.; Ouyang, L.; Li, J.; Zheng, J.; Yan, W.; Wu, W.; Jiang, H. Org. Lett. 2018, 20, 5090.
(b) Zhang, Z.; Mamba, T.; Huang, Q.-A.; Murayama, H.; Yamamoto, E.; Honma, T.; Tokunaga, M. Mol. Catal. 2019, 475, 110502.
[8] (a) Chen, S.-S.; Wu, M.-S.; Han, Z.-Y. Angew. Chem., Int. Ed. 2017, 56, 6641.
(b) Shen, H.-C.; Wu, Y.-F.; Zhang, Y.; Fan, L.-F.; Han, Z.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2018, 57, 2372.
(c) Wu, M.-S.; Fan, T.; Chen, S.-S.; Han, Z.-Y.; Gong, L.-Z. Org. Lett. 2018, 20, 2485.
(d) Fan, T.; Shen, H.-C.; Han, Z.-Y.; Gong, L.-Z. Chin. J. Chem. 2019, 37, 226.
(e) Wu, Z.; Wen, K.; Zhang, J.; Zhang, W. Org. Lett. 2017, 19, 2813.
(f) Wen, K.; Wu, Z.; Huang, B.; Ling, Z.; Gridnev, I. D.; Zhang, W. Org. Lett. 2018, 20, 1608.
(g) Wen, K.; Wu, Z.; Chen, B.; Chen, J.; Zhang, W. Org. Biomol. Chem. 2018, 16, 5618.
(h) Wu, Z.; Zhang, W. Chin. J. Org. Chem. 2017, 37, 2250(in Chinese). (吴正兴, 张万斌, 有机化学, 2017, 37, 2250.)
(i) Li, Y.; Wu, Z.; Ling, Z.; Chen, H.; Zhang, W. Org. Chem. Front. 2019, 6, 486.
(j) Kou, X.; Li, Y.; Wu, L.; Zhang, X.; Yang, G.; Zhang, W. Org. Lett. 2015, 17, 5566.
(k) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131, 3846.
(l) Ji, X.; Huang, H.; Wu, W.; Jiang, H. J. Am. Chem. Soc. 2013, 135, 5286.
(m) Xiong, Y.; Sun, Y.; Zhang, G. Tetrahedron Lett. 2018, 59, 347.
(n) Cooper, S. P.; Booker-Milburn, K. I. Angew. Chem., Int. Ed. 2015, 54, 6496.
(o) Houlden, C. E.; Bailey, C. D.; Ford, J. G.; Gagné, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2008, 130, 10066.
(p) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308.
(q) Zhang, J.; Wu, Z.; Xie, F.; Zhang, W. Chin. J. Org. Chem. 2018, 38, 1319(in Chinese) (张金刚, 吴正兴, 谢芳, 张万斌, 有机化学, 2018, 38, 1319.)
(r) Li, G.; Huo, X.; Jiang, X.; Zhang, W. Chem. Soc. Rev. 2020, 49, 2060.
(s) Wu, Y.; Huo, X.; Zhang, W. Chem.-Eur. J. 2020, 26, 1.
(t) Liu, X.; Chen, P.; Wu, F. Chin. J. Org. Chem. 2016, 36, 1797(in Chinese). (刘小建, 陈品红, 吴范宏, 有机化学, 2016, 36, 1797.)
(u) Geng, D. Chin. J. Org. Chem. 2019, 39, 301(in Chinese). (耿佃国, 有机化学, 2019, 39, 301.)
(v) Yang, W.; Qi, X.; Chen, P.; Liu, G. Chin. J. Org. Chem. 2019, 39, 122(in Chinese). (杨文铖, 亓晓旭, 陈品红, 刘国生, 有机化学, 2019, 39, 122.)
(w) Qiu, H.; Cheng, B.; Huang, Y.; Chen, C.; Zhou, P. Chin. J. Org. Chem. 2018, 38, 1817(in Chinese). (邱会华, 成博睿, 黄颖思, 陈翠, 周鹏, 有机化学, 2018, 38, 1817.)
(x) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762.
(y) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
(z) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
[9] (a) Xu, K.; Ye, J.; Liu, H.; Shen, J.; Liu, D.; Zhang, W. Adv. Synth. Catal. 2020, 362, 2059.
(b) Xu, K.; Liu, H.; Hou, Y.; Shen, J.; Liu, D.; Zhang, W. Chem. Commun. 2019, 55, 13295.
(c) Yao, K.; Liu, H.; Yuan, Q.; Liu, Y.; Liu, D.; Zhang, W. Acta Chim. Sinica 2019, 77, 993(in Chinese). (姚坤, 刘浩, 袁乾家, 刘燕刚, 刘德龙, 张万斌, 化学学报, 2019, 77, 993.)
(d) Zhang, J.; Huo, X.; Li, B.; Chen, Z.; Zou, Y.; Sun, Z.; Zhang, W. Adv. Synth. Catal. 2019, 361, 1130.
(e) Yao, K.; Yuan, Q.; Qu, X.; Liu, Y.; Liu, D.; Zhang, W. Chem. Sci. 2019, 10, 1767.
(f) Liu, P.; Huo, X.; Li, B.; He, R.; Zhang, J.; Wang, T.; Xie, F.; Zhang, W. Org. Lett. 2018, 20, 6564.
(g) He, R.; Wu, S.; Tang, H.; Huo, X.; Sun, Z.; Zhang, W. Org. Lett. 2018, 20, 6183.
(h) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.
(i) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Chem. Commun. 2018, 54, 599.
(j) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.
(k) He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513.
(l) Xia, C.; Shen, J.; Liu, D.; Zhang, W. Org. Lett. 2017, 19, 4251.
(m) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819.
[10] (a) Yao, K.; Liu, D.; Yuan, Q.; Imamoto, T.; Liu, Y.; Zhang, W. Org. Lett. 2016, 18, 6296.
(b) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
(c) Tang, H.; Huo, X.; Meng, Q.; Zhang, W. Acta Chim. Sinica 2016, 74, 219(in Chinese). (汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
[11] Steinhoff, B. A.; King, A. E.; Stahl, S. S. J. Org. Chem. 2006, 71, 1861.
[12] (a) Lin, R.; Yu, Y.; Zhang, Y. Synth. Commun. 1993, 23, 271.
(b) Lishchynskyi, A.; Muniz, K. Chem.-Eur. J. 2012, 18, 2212.
(c) Zhang, M.; Watanabe, K.; Tsukamoto, M.; Shibuya, R.; Morimoto, H.; Ohshima, T. Chem.-Eur. J. 2015, 21, 3937.
(d) Yu, E. C.; Johnson, B. M.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2016, 55, 13210.
(e) Bhowmik, A.; Fernandes, R. A. Org. Lett. 2019, 21, 9203.
[13] Moro, A. V.; Cardoso, F. S.; Correia, C. R. Org. Lett. 2009, 11, 3642.
[14] Thangavelu, S.; Rajendran, S.; Mukesh, D.; Anju, C. Tetrahedron:Asymmetry 2012, 23, 1360.
[15] Ono, M.; Kato, K.; Akita, H. Chem. Pharm. Bull. 2013, 61, 464.
文章导航

/