研究专题

路易斯碱-硼自由基在硼化反应、自由基催化和还原反应中的应用

  • 靳继康 ,
  • 夏慧敏 ,
  • 张凤莲 ,
  • 汪义丰
展开
  • 中国科学技术大学化学系 合肥 230026

收稿日期: 2020-05-07

  修回日期: 2020-05-19

  网络出版日期: 2020-05-29

基金资助

国家自然科学基金(Nos.21672195,21702201,21971226)和中央高校基本科研业务费专项资金(No.WK2060190082)资助项目.

Lewis-Base Boryl Radicals Enabled Borylation, Radical Catalysis and Reduction Reactions

  • Jin Jikang ,
  • Xia Huimin ,
  • Zhang Fenglian ,
  • Wang Yifeng
Expand
  • Department of Chemistry, University of Science and Technology of China, Hefei 230026

Received date: 2020-05-07

  Revised date: 2020-05-19

  Online published: 2020-05-29

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21672195, 21702201, 21971226) and the Fundamental Research Funds for the Central Universities (No. WK2060190082).

摘要

自由基反应具有高效迅捷、选择性优良及官能团容忍性好等优点,是构建有机化合物的有效策略和方式之一.路易斯碱-硼自由基具有独特的结构和反应性能,在有机合成中表现出了良好的应用潜力.总结了我们课题组在路易斯碱-硼自由基促进的有机分子转化方面取得的一些进展.研究成果主要包括以下三个方面:路易斯碱-硼自由基促进的硼化反应、路易斯碱-硼自由基催化反应,以及路易斯碱-硼自由基引发的还原反应.这些反应具有条件温和,官能团容忍性好,产率高,化学、区域选择性好等优点.

本文引用格式

靳继康 , 夏慧敏 , 张凤莲 , 汪义丰 . 路易斯碱-硼自由基在硼化反应、自由基催化和还原反应中的应用[J]. 有机化学, 2020 , 40(8) : 2185 -2194 . DOI: 10.6023/cjoc202005017

Abstract

Free radical reactions represent an efficient and significant tool to construct organic molecules by taking advantages of the high-efficiency, remarkable selectivity and good functional groups tolerance. Lewis-base boryl radicals are a class of species that possess unique structures and chemical reactivity, and a variety of synthetic applications have been developed. This account summarizes the research advances in this research field mainly contributed by our group. The results include Lewis-based boryl radicals enabled borylation reactions, Lewis-based boryl radicals-catalyzed new reactions, and Lewis-based boryl radicals promoted reduction reactions. These reactions feature mild reaction conditions, good functional groups compatibility, high yields, and excellent chemo-, regio-, and stereo-selectivities.

参考文献

[1] Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
[2] (a) Ueng, S.-H.; Makhlouf Brahmi, M.; Derat, É.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130, 10082.
(b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Lett. 2010, 12, 3002.
[3] Pan, X.; Lacôte, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669.
[4] (a) Pan, X.; Lalevée, J.; Lacôte, E.; Curran, D. P. Adv. Synth. Catal. 2013, 355, 3522.
(b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Biomol. Chem. 2011, 9, 3415.
[5] Kawamoto, T.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2015, 137, 8617.
[6] Tehfe, M.-A.; Makhlouf Brahmi, M.; Fouassier, J.-P.; Curran, D. P.; Malacria, M.; Fensterbank, L.; Lacôte, E.; Lalevée, J. Macromolecules 2010, 43, 2261.
[7] Hall, D. G. Boronic Acids:Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed., Wiley-VCH, Weinheim, Germany, 2011.
[8] (a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
(b) Brown, H. C.; Singaram, B. Acc. Chem. Res. 1988, 21, 287.
(c) Brown, H. C.; Rao, B. C. S. J. Am. Chem. Soc. 1956, 78, 5694.
[9] (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
(b) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018.
[10] (a) Wille, U. Chem. Rev. 2013, 113, 813.
(b) Li, C.; Zhu, C. Acta Chim. Sinica 2019, 77, 771(in Chinese). (李超忠, 朱晨, 化学学报, 2019, 77, 771.)
[11] (a) Friese, F. W.; Studer, A. Chem. Sci. 2019, 10, 8503.
(b) Taniguchi, T. Eur. J. Org. Chem. 2019, 2019, 6308.
(c) Zhang, F.-L.; Wang, Y.-F. Reactions through Radical Boryl Moieties in Science of Synthesis:Advances in Organoboron Chemistry towards Organic Synthesis, Eds.:Fernnádez, G., Thieme Verlag KG, Stuttgart, Germany, 2019, pp. 355~392.
(d) Yang, J.-M.; Li, Z.-Q.; Zhu, S.-F. Chin. J. Org. Chem. 2017, 37, 2481(in Chinese). (杨吉民, 李子奇, 朱守非, 有机化学, 2017, 37, 2481.)
(e) Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Angew. Chem., Int. Ed. 2011, 50, 10294.
[12] Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan, H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050.
[13] (a) Walton, J. C.; Brahmi, M. M.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Chu, Q.; Ueng, S.-H.; Solovyev, A.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 2350.
(b) Ueng, S.-H.; Solovyev, A.; Yuan, X.; Geib, S. J.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Newcomb, M.; Walton, J. C.; Curran, D. P. J. Am. Chem. Soc. 2009, 131, 11256.
[14] Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.
[15] Nerkar, S.; Curran, D. P. Org. Lett. 2015, 17, 3394.
[16] Watanabe, T.; Hirose, D.; Curran, D. P.; Taniguchi, T. Chem.-Eur. J. 2017, 23, 5404.
[17] (a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
(b) Luca, C.; Daniela, B. Curr. Med. Chem. 2006, 13, 65.
[18] (a) Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
(b) Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. E. Chem. Biol. Drug Des. 2014, 83, 450.
[19] (a) Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. J. Am. Chem. Soc. 2016, 138, 4338.
(b) Yamamoto, E.; Takenouchi, Y.; Ozaki, T.; Miya, T.; Ito, H. J. Am. Chem. Soc. 2014, 136, 16515.
(c) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
(d) Lee, K.-s.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7253.
(e) Bonet, A.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2010, 49, 5130.
(f) Feng, X.; Yun, J. Chem. Commun. 2009, 6577.
(g) Bonet, A.; Sole, C.; Gulyás, H.; Fernández, E. Chem. Asian J. 2011, 6, 1011.
[20] Qi, J.; Zhang, F.-L.; Huang, Y.-S.; Xu, A.-Q.; Ren, S.-C.; Yi, Z.-Y.; Wang, Y.-F. Org. Lett. 2018, 20, 2360.
[21] (a) Thomas, G. L.; Johannes, C. W. Curr. Opin. Chem. Biol. 2011, 15, 516.
(b) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
(c) Oehlrich, D.; Prokopcova, H.; Gijsen, H. J. M. Bioorg. Med. Chem. Lett. 2014, 24, 2033.
(d) Edwards, P. D.; Albert, J. S.; Sylvester, M.; Aharony, D.; Andisik, D.; Callaghan, O.; Campbell, J. B.; Carr, R. A.; Chessari, G.; Congreve, M.; Frederickson, M.; Folmer, R. H. A.; Geschwindner, S.; Koether, G.; Kolmodin, K.; Krumrine, J.; Mauger, R. C.; Murray, C. W.; Olsson, L.-L.; Patel, S.; Spear, N.; Tian, G. J. Med. Chem. 2007, 50, 5912.
(e) Shankaran, K.; Donnelly, K. L.; Shah, S. K.; Guthikonda, R. N.; MacCoss, M.; Humes, J. L.; Pacholok, S. G.; Grant, S. K.; Kelly, T. M.; Wong, K. K. Bioorg. Med. Chem. Lett. 2004, 14, 4539.
(f) Kshirsagar, U. A. Org. Biomol. Chem. 2015, 13, 9336.
[22] Jin, J.-K.; Zhang, F.-L.; Zhao, Q.; Lu, J.-A.; Wang, Y.-F. Org. Lett. 2018, 20, 7558.
[23] (a) Demay, S.; Volant, F.; Knochel, P. Angew. Chem., Int. Ed. 2001, 40, 1235.
(b) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1992, 114, 6671.
[24] Zhou, N.; Yuan, X.-A.; Zhao, Y., Xie, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 3990.
[25] Shimoi, M.; Watanabe, T.; Maeda, K.; Curran, D. P.; Taniguchi, T. Angew. Chem., Int. Ed. 2018, 57, 9485.
[26] (a) Brauer, D. J.; Bürger, H.; Buchheim-Spiegel, S.; Pawelke, G. Eur. J. Inorg. Chem. 1999, 1999, 255.
(b) Bai, J.; Burke, L. D.; Shea, K. J. J. Am. Chem. Soc. 2007, 129, 4981.
(c) Caskey, S. R.; Stewart, M. H.; Johnson, M. J. A.; Kampf, J. W. Angew. Chem., Int. Ed. 2006, 45, 7422.
(d) Bell, N. J.; Cox, A. J.; Cameron, N. R.; Evans, J. S. O.; Marder, T. B.; Duin, M. A.; Elsevier, C. J.; Baucherel, X.; Tulloch, A. A. D.; Tooze, R. P. Chem. Commun. 2004, 1854.
(e) Ansorge, A.; Brauer, D. J.; Bürger, H.; Hagen, T.; Pawelke, G. Angew. Chem., Int. Ed. 1993, 32, 384.
(f) Denis, St. J. D.; He, Z.; Yudin, A. K. ACS Catal. 2015, 5, 5373.
(g) He, Z.; Zajdlik, A.; Yudin, A. K. Acc. Chem. Res. 2014, 47, 1029.
[27] (a) Kan, S. B. J.; Huang, X.; Gumulya, Y.; Chen, K.; Arnold, F. H. Nature 2017, 552, 132.
(b) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8, 7351.
(c) Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135, 14094.
(d) Allen, T. H.; Kawamoto, T.; Gardner, S.; Geib, S. J.; Curran, D. P. Org. Lett. 2017, 19, 3680.
(e) Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.
(f) Corless, V. B.; Holownia, A.; Foy, H.; Mendoza-Sanchez, R.; Adachi, S.; Dudding, T.; Yudin, A. K. Org. Lett. 2018, 20, 5300.
(g) Lv, W.-X.; Zeng, Y.-F.; Li, Q.; Chen, Y.; Tan, D.-H.; Yang, L.; Wang, H. Angew. Chem., Int. Ed. 2016, 55, 10069.
(h) Li, J.; Burke, M. D. J. Am. Chem. Soc. 2011, 133, 13774.
(i) He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770.
[28] Ren, S.-C.; Zhang, F.-L.; Xu, A.-Q.; Yang, Y.; Zheng, M.; Zhou, X.; Fu, Y.; Wang, Y.-F. Nat. Commun. 2019, 10, 1934.
[29] Liu, L.; Chen, Q.; Wu, Y.-D.; Li, C. J. Org. Chem. 2005, 70, 1539.
[30] Zhu, C.; Dong, J.; Liu, X.; Gao, L.; Zhao, Y.; Xie, J.; Li, S.; Zhu, C. Angew. Chem., Int. Ed. 2020, 59, 12817.
[31] Huang, Y.-S.; Wang, J.; Zheng, W.-X.; Zhang, F.-L.; Yu, Y.-J.; Zheng, M.; Zhou, X.; Wang, Y.-F. Chem. Commun. 2019, 55, 11904.
[32] (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Hagmann, W. K. J. Med. Chem., 2008, 51, 4359.
(c) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003.
(d) O'Hagan, D.; S. Rzepa, H.; Chem. Commun. 1997, 645.
[33] Hiyama, T.; Yamamoto, H. In Organofluorine Compounds:Chemistry and Applications, Eds.:Hiyama T.; Yamamoto, H., Springer Berlin Heidelberg, Berlin, 2000, pp. 25~76.
[34] Jin, J.-K.; Zheng, W.-X.; Xia, H.-M.; Zhang, F.-L.; Wang, Y.-F. Org. Lett. 2019, 21, 8414.
[35] (a) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151.
(b) Vedejs, E.; Fields, S. C.; Hayashi, R.; Hitchcock, S. R.; Powell, D. R.; Schrimpf, M. R. J. Am. Chem. Soc. 1999, 121, 2460.
(c) Daubresse, N.; Chupeau, Y.; Francesch, C.; Lapierre, C.; Pollet, B.; Rolando, C. Chem. Commun. 1997, 1489.
(d) Van der Veken, P.; Senten, K.; Kertèsz, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768.
[36] Liu, X.; Lin, E.-E.; Chen, G.; Li, J.-L.; Liu, P.; Wang, H. Org. Lett. 2019, 21, 8454.
[37] Qi, J.; Zhang, F.-L.; Jin, J.-K.; Zhao, Q.; Li, B.; Liu, L.-X.; Wang, Y.-F. Angew. Chem., Int. Ed. 2020, 59, 12876.
[38] Xia, P.-J.; Song, D.; Ye, Z.-P.; Hu, Y.-Z.; Xiao, J.-A.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Angew. Chem., Int. Ed. 2020, 59, 6706.
[39] Dai, W.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2020, 142, 6261.
[40] (a) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Miller, R. F. J. Am. Chem. Soc. 1988, 110, 3300.
(b) Feldman, K. S.; Simpson, R. E. J. Am. Chem. Soc. 1989, 111, 4878.
(c) Miura, K.; Fugami, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 5135.
(d) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Jean, G. J. Org. Chem. 1992, 57, 100.
(e) Feldman, K. S.; Berven, H. M.; Weinreb, P. H. J. Am. Chem. Soc. 1993, 115, 11364.
(f) Journet, M.; Rouillard, A.; Cai, D.; Larsen, R. D. J. Org. Chem. 1997, 62, 8630.
(g) Feldman, K. S.; Fisher, T. E. Tetrahedron 1989, 45, 2969.
(h) Kim, S.; Lee, S. Tetrahedron Lett. 1991, 32, 6575.
(i) Zhang, H.; Jeon, K. O.; Hay, E. B.; Geib, S. J.; Curran, D. P.; LaPorte, M. G. Org. Lett. 2014, 16, 94.
(k) Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2011, 133, 10376.
[41] Hashimoto, T.; Kawamata, Y.; Maruoka, K. Nat. Chem. 2014, 6, 702.
[42] (a) Zhao, Q.-Q.; Zhou, X.-S.; Xu, S.-H.; Wu, Y.-L.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2020, 22, 2470.
(b) Zhao, Q.-Q.; Chen J.; Zhou, X.-S.; Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem.-Eur. J. 2019, 25, 8024.
(c) Yu, X.-Y.; Zhao Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066.
[43] Xu, A.-Q.; Zhang, F.-L.; Ye, T.; Yu, Z.-X.; Wang, Y.-F. CCS Chem. 2019, 1, 504.
[44] (a) Kuivila, H. G. Acc. Chem. Res. 1968, 1, 299.
(b) Neumann, W. P. Synthesis 1987, 665.
[45] (a) Boyer, I. J. Toxicology 1989, 55, 253.
(b) Ingham, R. K., Rosenberg, S. D., Gilman, H. Chem. Rev. 1960, 60, 459.
[46] (a) Hurd, R. N.; DeLaMater, G. Chem. Rev. 1961, 61, 45.
(b) Guo, W.-S.; Wen, L.-R.; Li, M. Org. Biomol. Chem. 2015, 13, 1942.
(c) Jagodziński, T. S. Chem. Rev. 2003, 103, 197.
[47] Wertheim, E. J. Am. Chem. Soc. 1935, 57, 545.
[48] Yu, Y.-J.; Zhang, F.-L.; Cheng, J.; Hei, J.-H.; Deng, W.-T.; Wang, Y.-F. Org. Lett. 2018, 20, 24.
[49] Du, W.; Curran, D. P. Org. Lett. 2003, 5, 1765.
[50] (a) Wang, J.; Qin, T., Chen, T.-G.; Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Angew. Chem., Int. Ed. 2016, 55, 9676.
(b) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D; Creech, G.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 11132.
(c) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.
(d) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 260.
(e) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
(f) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342.
(g) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012.
(h) Slutskyy, Y.; Overman, L. E. Org. Lett. 2016, 18, 2564.
(i) Huang, L.; Olivares, A. M.; Weix, D. J. Angew. Chem., Int. Ed. 2017, 56, 11901.
(j) Tlahuext-Aca, A.; Garza-Sanchez, R. A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 3708.
(k) Kachkovskyi, G.; Faderl, C.; Reiser, O. Adv. Synth. Catal. 2013, 355, 2240.
(l) Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 1968.
(m) Candish, L.; Teders, M.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 7440.
(n) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.
(o) Murarka, S. Adv. Synth. Catal. 2018, 360, 1735.
[51] Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161.
[52] Jin J.-K.; Zhang F.-L.; Wang Y.-F. Acta Chim. Sinica 2019, 77, 889(in Chinese). (靳继康, 张凤莲, 汪义丰, 化学学报, 2019, 77, 889.)
[53] Gao, L.; Wang, G.; Cao, J.; Yuan, D.; Xu, C.; Guo, X.; Li, S. Chem. Commun. 2018, 54, 11534.
文章导航

/