研究简报

Fmoc-DOPA(acetonide)-OH的简单高效合成

  • 刘晶晶 ,
  • 张东辉 ,
  • 江伟男 ,
  • 刘润辉
展开
  • a 华东理工大学材料科学与工程学院 超细材料重点实验室 特种功能高分子材料及相关技术重点实验室 上海 200237;
    b 复旦大学高分子科学系 上海 200438

收稿日期: 2020-04-19

  修回日期: 2020-05-13

  网络出版日期: 2020-06-01

基金资助

国家自然科学基金(Nos.21774031,31800801)、上海市自然科学基金(No.18ZR1410300)、中央高校基本科研基金(Nos.22221818014,50321041917001)资助项目.

Simple and Cost-Effective Synthesis of Fmoc-DOPA(acetonide)-OH

  • Liu Jingjing ,
  • Zhang Donghui ,
  • Jiang Weinan ,
  • Liu Runhui
Expand
  • a Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory of Specially Functional Polymeric Materials and Related Technology, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237;
    b State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438

Received date: 2020-04-19

  Revised date: 2020-05-13

  Online published: 2020-06-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21774031, 31800801), the Natural Science Foundation of Shanghai City (No. 18ZR1410300), and the Fundamental Research Funds for the Central Universities (Nos. 22221818014, 50321041917001).

摘要

受贻贝粘附蛋白启发而产生的3,4-二羟基苯丙氨酸(DOPA)衍生物引起了人们对生物材料和医疗器械的功能化涂层产生广泛兴趣.芴甲氧羰酰基-3,4-二羟基缩丙酮-L-苯丙氨酸[Fmoc-DOPA(acetonide)-OH]是贻贝粘附蛋白和多肽的固相合成关键原料.然而,现有的Fmoc-DOPA(acetonide)-OH的合成方法步骤繁琐、成本高,使其实际应用受到极大阻碍.本工作报道的两步法策略制备Fmoc-DOPA(acetonide)-OH,是一种简单且经济高效的合成方法,具有广阔的应用前景.

本文引用格式

刘晶晶 , 张东辉 , 江伟男 , 刘润辉 . Fmoc-DOPA(acetonide)-OH的简单高效合成[J]. 有机化学, 2020 , 40(8) : 2543 -2546 . DOI: 10.6023/cjoc202004029

Abstract

3,4-Dihydroxyphenylalanine (DOPA) derivatives inspired by mussels have attracted broad interest in functional coatings of biomaterials and biomedical devices. Fmoc-DOPA(acetonide)-OH is the key precursor for solid-phase synthesis of adhesive mussel proteins and peptides. However, existing synthesis methods of Fmoc-DOPA(acetonide)-OH were tedious and costly which greatly hindered its practical application. Herein, a simple two-step strategy for preparing Fmoc-DOPA-(acetonide)-OH is reported, which is a simple and cost-effective synthesis method with broad application prospects.

参考文献

[1] (a) Waite, J. H.; Qin, X. Biochemistry 2001, 40, 2887.
(b) Kord Forooshani, P.; Lee, B. P. J. Polym. Sci., Part A:Polym. Chem. 2016, 55, 9.
(c) Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Annu. Rev. Mater. Res. 2011, 41, 99.
[2] (a) Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Science 2007, 318, 426.
(b) Lee, H. A.; Ma, Y. F.; Zhou, F.; Hong, S.; Lee, H. Acc. Chem. Res. 2019, 52, 704.
(c) Ye, Q.; Zhou, F.; Liu, W. M. Chem. Soc. Rev. 2011, 40, 4244.
[3] (a) Liu, Y.; Ai, K.; Lu, L. Chem. Rev. 2014, 114, 5057.
(b) Wu, R.; Ding, X. K.; Qi, Y.; Zeng, Q.; Wu, Y. W.; Yu, B. R.; Xu, F. J. Small 2018, 14, 11.
(c) Xu, M.; Khan, A.; Wang, T.; Song, Q.; Han, C.; Wang, Q.; Gao, L.; Huang, X.; Li, P.; Huang, W. ACS Appl. Bio Mater. 2019, 2, 3329.
(d) Li, X. Y.; Gao, P.; Tan, J. Y.; Xiong, K. Q.; Maitz, M. F.; Pan, C. J.; Wu, H. K.; Chen, Y.; Yang, Z. L.; Huang, N. ACS Appl. Mater. Interfaces 2018, 10, 40844.
(e) Pandey, N.; Hakamivala, A.; Xu, C. C.; Hariharan, P.; Radionov, B.; Huang, Z.; Liao, J.; Tang, L. P.; Zimmern, P.; Nguyen, K. T.; Hong, Y. Adv. Healthcare Mater. 2018, 7, 1701069.
[4] (a) Barclay, T. G.; Hegab, H. M.; Clarke, S. R.; Ginic-Markovic, M. Adv. Mater. Interfaces 2017, 4, 1601192.
(b) Liu, X. S.; Cao, J. M.; Li, H.; Li, J. Y.; Jin, Q.; Ren, K. F.; Ji, J. ACS Nano 2013, 7, 9384.
(c) Yang, C.; Ding, X.; Ono, R. J.; Lee, H.; Hsu, L. Y.; Tong, Y. W.; Hedrick, J.; Yang, Y. Y. Chem. Sci. 2014, 26, 7346.
(d) Sheng, W. B.; Li, B.; Wang, X. L.; Dai, B.; Yu, B.; Jia, X.; Zhou, F. Chem. Sci. 2015, 6, 2068.
(e) Zhang, S. X.; Liu, W. Y.; Dong, Y. S.; Wei, T.; Wu, Z. Q.; Chen, H. Langmuir 2019, 35, 3470.
(f) Liu, L.; Tian, X. H.; Ma, Y.; Duan, Y. Q.; Zhao, X.; Pan, G. Q. Angew. Chem., Int. Ed. 2018, 57, 7878.
(g) Wu, J. X.; Zheng, Y. J.; Jiang, S. B.; Qu, Y. C.; Wei, T.; Zhan, W. J.; Wang, L.; Yu, Q.; Chen, H. ACS Appl. Mater. Interfaces 2019, 11, 12357.
[5] (a) Zhao, Y. H.; Wu, Y.; Wang, L.; Zhang, M. M.; Chen, X.; Liu, M. J.; Fan, J.; Liu, J. Q.; Zhou, F.; Wang, Z. K. Nat. Commun. 2017, 8, 8.
(b) Sheng, W. B.; Li, W.; Yu, B.; Li, B.; Jordan, R.; Jia, X.; Zhou, F. Angew. Chem., Int. Ed. 2019, 58, 12018.
(c) Cong, Z. Q.; Zhang, L.; Ma, S. Q.; Lam, K. S.; Yang, F. F.; Liao, Y. H. ACS Nano 2020, 14, 1958.
[6] (a) Liu, L.; Tian, X. H.; Ma, Y.; Duan, Y. Q.; Zhao, X.; Pan, G. Q. Angew. Chem., Int. Ed. 2018, 57, 7878.
(b) Kuang, J.; Messersmith, P. B. Langmuir 2012, 28, 7258.
(c) Statz, A. R.; Meagher, R. J.; Barron, A. E.; Messersmith, P. B. J. Am. Chem. Soc. 2005, 127, 7972.
[7] Liu, Z.; Hu, B. H.; Messersmith, P. B. Tetrahedron Lett. 2008, 49, 5519.
[8] Messersmith, P. B.; Hu, B.-H.; Liu, Z. US 0087622, 2010.
[9] St-Georges, C.; Desilets, A.; Beliveau, F.; Ghinet, M.; Dion, S. P.; Colombo, E.; Boudreault, P. L.; Najmanovich, R. J.; Leduc, R.; Marsault, E. Eur. J. Med. Chem. 2017, 129, 110.
[10] Sever, M. J.; Wilker, J. J. Tetrahedron 2001, 57, 6139.
[11] (a) Tredwell, M.; Preshlock, S. M.; Taylor, N. J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 7751.
(b) Liu, Z.; Hu, B. H.; Messersmith, P. B. Tetrahedron Lett. 2008, 49, 5519.
[12] oloshonok, V. A.; Ueki, H. Synthesis 2008, 693.
文章导航

/