综述与进展

CO2活化和转化策略研究进展

  • 陈凯宏 ,
  • 李红茹 ,
  • 何良年
展开
  • a 南开大学化学学院 元素有机化学国家重点实验室 天津 300071;
    b 南开大学药学院 天津 300353

收稿日期: 2020-04-19

  修回日期: 2020-05-22

  网络出版日期: 2020-06-01

基金资助

国家自然科学基金(No.21975135)和中国博士后科学基金(No.2018M641624)资助项目.

Advance and Prospective on CO2 Activation and Transformation Strategy

  • Chen Kaihong ,
  • Li Hongru ,
  • He Liangnian
Expand
  • a State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071;
    b College of Pharmacy, Nankai University, Tianjin 300353

Received date: 2020-04-19

  Revised date: 2020-05-22

  Online published: 2020-06-01

Supported by

Project supported by the National Natural Science Foundation of China (No. 21975135) and the China Postdoctoral Science Foundation (No. 2018M641624).

摘要

CO2是大气中主要温室气体之一,也是丰富、可再生的C1资源,将CO2转化为有价值的化学品不仅能缓解化学工业对化石资源的依赖,还能有效减少CO2排放.然而,CO2内在的热力学稳定性和动力学惰性,决定了CO2的活化及合理转化路线的开发是其成功转化的关键.18年来,何良年课题组在CO2转化策略的设计和基于活化机理的高效催化剂开发方面做了系统的工作,不仅提出了碳捕集与转化偶合、CO2分级可控还原功能化、利用多组分串联反应突破热力学限制及光促进的CO2转化等策略,还针对不同的策略开发出了相应的高效催化体系,实现了温和条件下CO2的转化.基于何良年课题组工作对可持续发展的二氧化碳化学进行概述,希望能为同行提供有益借鉴,进一步推动CO2化学的的应用与发展.

本文引用格式

陈凯宏 , 李红茹 , 何良年 . CO2活化和转化策略研究进展[J]. 有机化学, 2020 , 40(8) : 2195 -2207 . DOI: 10.6023/cjoc202004030

Abstract

Climate change and depletion of fossil fuels have drawn considerable attention. Considering carbon dioxide is both the dominant greenhouse gas and renewable C1 source, CO2 valorization into valuable chemicals is considered to reconcile the environment benefit and sustainable chemistry development. Unfortunately, the thermodynamic stability and kinetic inertness of CO2 make its chemical transformation challenging. As a consequence, developing highly efficient catalytic systems and synthetic protocols is crucial for CO2 conversion. In recent years, He's group made great progress on strategy design and catalyst development for CO2 conversion. A series novel CO2 conversion strategies are proposed, including CO2 capture and in-situ transformation, hierarchical reductive functionalization of CO2, designing thermodynamically favorable reactions by multi-component cascade reaction and photo-promoted CO2 transformation. Concurrently, the corresponding highly efficient catalytic systems were also developed based on the reaction mechanism and thus CO2 transformation was successfully performed under mild conditions. It is hoped that this review can arouse broad concern on CO2 transformation and spur its further development.

参考文献

[1] (a) He, M., Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.
(b) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Green Chem. 2017, 19, 3707.
(c) Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52.
(d) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
(e) Yao, X.-Y.; Zhang, Y.; Gao, S.; He, L.-N. J. Huazhong Norm. Univ., Nat. Sci. 2019, 53, 834(in Chinese). (姚向阳, 张彦, 高嵩, 何良年, 华中师范大学学报(自然科学版), 2019, 53, 834.)
(f) Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N. RSC Adv. 2011, 1, 545.
(g) Yu, B.; Diao, Z.-F.; Guo, C.-X.; He, L.-N. J. CO2 Util. 2013, 1, 60.
(h) Li, Y.-N.; Ma, R.; He, L.-N.; Diao, Z.-F. Catal. Sci. Technol. 2014, 4, 1478.
(i) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
[2] (a) Yang, Z.-Z.; He, L.-N.; Gao, J.; Liu, A.-H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
(b) Fu, H.-C.; You, F.; Li, H.-R.; He, L.-N. Front. Chem. 2019, 7, 525.
(c) Kar, S.; Goeppert, A.; Prakash, G. K. S. Acc. Chem. Res. 2019, 52, 2892.
[3] Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.
[4] Zhao, Y.-N.; Yang, Z.-Z.; Luo, S.-H.; He, L.-N. Catal. Today 2013, 200, 2.
[5] Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519.
[6] Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Yu, B. Environ. Sci. Technol. 2013, 47, 1598.
[7] (a) Meng, X.; Ju, Z.; Zhang, S.; Liang, X.; Solms, N.; Zhang, X.; Zhang, X. Green Chem. 2019, 21, 3456.
(b) Luo, X.; Chen, K.; Li, H.; Wang, C. Int. J. Hydrogen Energy 2016, 41, 9175.
[8] (a) Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. Angew. Chem., Int. Ed. 2014, 53, 5922.
(b) Liu, A.-H.; Yu, N.; He, L.-N. Greenhouse Gases:Sci. Technol. 2015, 5, 17.
(c) Shi, G.; Chen, K.; Wang, Y.; Li, H.; Wang, C. ACS Sustainable Chem. Eng. 2018, 6, 5760.
(d) Lang, X.-D.; Yu, Y.-C.; Li, Z.-M.; He, L.-N. J. CO2 Util. 2016, 15, 115.
[9] Liu, A.-H.; Ma, R.; Song, C,; Yang, Z.-Z.; Yu, A.; Cai, Y.; He, L.-N.; Zhao, Y.-N.; Yu, B.; Song, Q.-W. Angew. Chem., Int. Ed. 2012, 51, 11306.
[10] Zhang, S.; Li, Y.-N.; Zhang, Y.-W.; He, L.-N.; Yu, B.; Song, Q.-W.; Lang, X.-D. ChemSusChem 2014, 7, 1484.
[11] (a) Li, Y.-N.; He, L.-N.; Liu, A.-H.; Lang, X.-D.; Yang, Z.-Z.; Yu, B.; Luan, C.-R. Green Chem. 2013, 15, 2825.
(b) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem. Soc. 2016, 138, 778.
(c) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. Green Chem. 2016, 18, 5831.
[12] Li, Y.-N.; He, L.-N.; Lang, X.-D.; Liu, X.-F.; Zhang, S. RSC Adv. 2014, 4, 49995.
[13] Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.
[14] (a) Liu, X.-F.; Ma, R.; Qiao, C.; Cao, H.; He, L.-N. Chem.-Eur. J. 2016, 22, 16489.
(b) Fang, C.; Lu, C.; Liu, M.; Zhu, Y.; Fu, Y.; Liu, B.-L. ACS Catal. 2016, 6, 7876.
[15] (a) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Green Chem. 2017, 19, 1726.
(b) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Pure Appl. Chem. 2018, 90, 1099.
(c) Liu, X.-F.; Li, X.-Y.; Qiao, C.; He, L.-N. Synlett 2018, 28, 548.
(d) Liu, X.-F.; Li, X.-Y.; He, L.-N. Eur. J. Org. Chem. 2019, 2019, 2347.
[16] (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.
(b) Li, X.-Y.; Zheng, S.-S.; Liu, X.-F.; Yang, Z.-W.; Tan, T.-Y.; Yu, A.; He, L.-N. ACS Sustainable Chem. Eng. 2018, 6, 8130.
(c) Li, G.; Chen, J.; Zhu, D.-Y.; Chen, Y.; Xia, J.-B. Adv. Synth. Catal. 2018, 360, 2364.
[17] (a) Wang, M.-Y.; Wang, N.; Liu, X.-F.; Qiao, C.; He, L.-N. Green Chem. 2018, 20, 1564.
(b) Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He, L.-N. Angew. Chem., Int. Ed. 2017, 56, 7425.
(c) Cao, Y.; Wang, N.; He, X.; Li, H.-R.; He, L.-N. ACS Sustainable Chem. Eng. 2018, 6, 15032.
[18] (a) Li, X.-D.; Xia, S.-M.; Chen, K.-H.; Liu, X.-F.; Li, H.-R.; He, L.-N. Green Chem. 2018, 20, 4853.
(b) Li, W.-D.; Zhu, D.-Y.; Li, G.; Chen, J.; Xia, J.-B. Adv. Synth. Catal. 2019, 361, 5098.
[19] Lang, X.-D.; He, L.-N. ChemSusChem 2018, 11, 2062.
[20] (a) Qiao, C.; Liu, X.-F.; Liu, X.; He, L.-N. Org. Lett. 2017, 19, 1490.
(b) Qiao, C.; Yao, X.-Y.; Liu, X.-F.; Li, H.-R.; He, L.-N. Asian J. Org. Chem. 2018, 7, 1815.
[21] Lang, X.-D.; You, F.; He, X.; Yu, Y.-C.; He, L.-N. Green Chem. 2019, 21, 509.
[22] (a) Diao, Z.-F.; Zhou, Z.-H.; Guo, C.-X.; Yu, B.; He, L.-N. RSC Adv. 2016, 6, 32400.
(b) Du, Y.; Kong, D.-L.; Wang, H.-Y.; Cai, F.; Tian, J.-S.; Wang, J.-Q.; He, L.-N. J. Mol. Catal. A:Chem. 2005, 241, 233.
(c) Tamura, M.; Honda, M.; Nakagawa, Y.; Tomishige, K. J. Chem. Technol. Biotechnol. 2014, 89, 19.
(d) Liu, A.-H.; Li, Y.-N.; He, L.-N. Pure Appl. Chem. 2012, 84, 581.
(e) Lang, X.-D.; He, L.-N. Chem. Rec. 2016, 16, 1337.
(f) Li, X.-D.; He, X.; Liu, X.-F.; He, L.-N. Sci. China:Chem. 2017, 60, 841.
(g) Wang, M.-Y.; He, L.-N. Sci. China:Chem. 2016, 59, 507.
[23] Zhou Z.-H.; Xia S.-M.; He, L.-N. Acta Phys.-Chim. Sin. 2018, 34, 838.
[24] Zhou, Z.-H.; Song, Q.-W.; He, L.-N. ACS Omega 2017, 2, 337.
[25] Song, Q.-W.; Zhou, Z.-H.; Wang, M.-Y.; Zhang, K.; Liu, P.; Xun, J.-Y.; He, L.-N. ChemSusChem 2016, 9, 2054.
[26] Li, X.-D.; Song, Q.-W.; Lang, X.-D.; Chang, Y.; He, L.-N. ChemPhysChem 2017, 18, 3182.
[27] Li, X.-D.; Cao, Y.; Ma, R.; He, L.-N. J. CO2 Util. 2018, 25, 338.
[28] Xia, S.-M.; Song, Y.; Li, X.-D.; Li, H.-R.; He, L.-N. Molecules 2018, 23, 3033.
[29] Song, Q.-W.; Yu, B.; Li, X.-D.; Ma, R.; Diao, Z.-F.; Li, R.-G.; Li, W.; He, L.-N. Green Chem. 2014, 16, 1633.
[30] Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967.
[31] Li, X.-D.; Lang, X.-D.; Song, Q.-W.; Guo, Y.-K.; He, L.-N. Chin. J. Org. Chem. 2016, 36, 744(in Chinese). (李雪冬, 郎咸东, 宋清文, 郭亚坤, 何良年, 有机化学, 2016, 36, 744.)
[32] (a) Song, Q.-W.; Chen, W.-Q.; Ma, R.; Yu, A.; Li, Q.-Y.; Chang, Y.; He, L.-N. ChemSusChem 2015, 8, 821.
(b) Zhou, Z.-H.; Guo, C.-X.; Xie, J.-N.; Liu, K.-X.; He, L.-N. Curr. Org. Synth. 2017, 14, 1185.
(c) He, L.-N. Curr. Org. Synth. 2020, 17, 2.
(d) He, L.-N. Mini-Rev. Org. Chem. 2019, 16, 409.
[33] (a) Zhou, Z.-H.; Zhang, X.; Huang, Y.-F.; Chen, K.-H.; He, L.-N. Chin. J. Catal. 2019, 40, 1345.
(b) Zhou, Z.-H.; Chen, K.-H.; He, L.-N. Chin. J. Chem. 2019, 37, 1223.
[34] (a) Bonin, J.; Maurin, A.; Robert, M. Coord. Chem. Rev. 2017, 334, 184.
(b) Tamaki, Y.; Ishitani, O. ACS Catal. 2017, 7, 3394.
(c) Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. Adv. Mater. 2018, 1804710.
(d) Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194.
(e) Zhao, Y.; Waterhouse, G. I. N.; Chen G.; Xiong, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. Chem. Soc. Rev. 2019, 48, 1972.
[35] (a) Ye, J. H.; Miao, M.; Huang, H.; Yan, S. S.; Yin, Z. B.; Zhou, W. J.; Yu, D. G. Angew. Chem., Int. Ed. 2017, 56, 15416.
(b) Yin, Z. B.; Ye, J. H.; Zhou, W. J.; Zhang, Y. H.; Ding, L.; Gui, Y. Y.; Yan, S. S.; Li, J.; Yu, D. G. Org. Lett. 2018, 20, 190.
(c) Sun, L.; Ye, J. H.; Zhou, W. J.; Zeng, X.; Yu, D. G. Org. Lett. 2018, 20, 3049.
(d) Ju, T.; Fu, Q.; Ye, J. H.; Zhang, Z.; Liao, L. L.; Yan, S. S.; Tian, X. Y.; Luo, S. P.; Li, J.; Yu, D. G. Angew. Chem., Int. Ed. 2018, 57, 13897.
(e) Liao, L. L.; Cao, G. M.; Ye, J. H.; Sun, G. Q.; Zhou, W. J.; Gui, Y. Y.; Yan, S. S.; Shen, G.; Yu, D. G. J. Am. Chem. Soc. 2018, 140, 17338.
(f) Fan, X.; Gong, X.; Ma, M. Nat. Commun. 2018, 9, 4936.
(g) Murata, K.; Numasawa, N.; Shimomaki, K.; Chem. Commun. 2017, 53, 3098.
(h) Yeung, C. S. Angew. Chem., Int. Ed. 2019, 58, 5491.
[36] Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.
[37] He, X.; Cao, Y.; Lang, X.-D.; Wang, N.; He, L.-N. ChemSusChem 2018, 11, 3382.
[38] (a) He, L. N.; Yang, Z. Z.; Liu, A. H.; Gao, J. In Advances in CO2 Conversion and Utilization, ACS Symposium Series, Vol. 1056, Ed.:Hu, Y. H., American Chemical Society, Washington DC, 2010, p. 77.
(b) He, L. N. Carbon Dioxide Chemistry, Science Press, Beijing, 2013(in Chinese). (何良年, 二氧化碳化学, 科学出版社, 北京, 2013.)
[39] (a) Poland, S. I.; Darensbourg, D. J. Green Chem. 2017, 19, 4990.
(b) Wang, Y.; Darensbourg, D. J. Coord. Chem. Rev. 2018, 372, 85.
(c) Lu, X. B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
(d) Kember, M. R.; Buchard, A.; Williams, C. K. Chem. Commun. 2011, 47, 141.
(e) Lu, X. B.; Ren, W. M.; Wu, G. P. Acc. Chem. Res. 2012, 45, 1721.
[40] (a) Leino, E.; Maki-Arvela, P.; Eta, V. Appl. Catal., A 2010, 383, 1.
(b) Shukla, K.; Srivastava, V. C. Catal. Rev.:Sci. Eng. 2017, 59, 1.
(c) Dai, W. L.; Luo, S. L.; Yin, S. F. Appl. Catal., A 2009, 366, 2.
(d) Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312.
(e) Tamboli, A. H.; Chaugule, A. A.; Kim, H. Chem. Eng. J. 2017, 323, 530.
[41] (a) Broere, D. L. J.; Mercado, B. Q.; Holland, P. L. Angew. Chem., Int. Ed. 2018, 57, 6507.
(b) Waldman, T. E.; Mcghee, W. D. J. Chem. Soc., Chem. Commun. 1994, 8, 957.
(c) Camp, C.; Chatelain, L.; Kefalidis, C. E. Chem. Commun. 2015, 51, 15454.
(d) Maria, L.; Bandeira, N. A. G.; Marcalo, J. Chem. Commun. 2020, 56, 431.
(e) Keane, A. J.; Farrell, W. S.; Yonke, B. L. Angew. Chem., Int. Ed. 2015, 54, 10220.
[42] (a) Yoo, W. J.; Nguyen, T. V. Q.; Kobayashi, S. Angew. Chem., Int. Ed. 2014, 53, 10213.
(b) Ye, J. H.; Zhu, L.; Yan, S. S.; Miao, M.; Zhang, X. C.; Zhou, W. J.; Li, J.; Lan, Y.; Yu, D. G. ACS Catal. 2017, 7, 8324.
(c) Zhang, W. Z.; Yang, M. W.; Yang, X. T.; Shi, L. L.; Wang, H. B.; Lu, X. B. Org. Chem. Front. 2016, 3, 217.
(d) Cheng, L.; Xie, J. Chin. J. Org. Chem. 2020, 40, 247(in Chinese). (程磊, 谢建华, 有机化学, 2020, 40, 247.)
(e) Xu, P., Wang, S.; Fang, Y.; Ji, S. J. Chin. J. Org. Chem. 2018, 38, 1626(in Chinese). (徐佩, 汪顺义, 方毅, 纪顺俊, 有机化学, 2018, 38, 1626.)
(f) Zhang, W.; Lü, X. Chin. J. Catal. 2012, 33, 745(in Chinese). (张文珍, 吕小兵, 催化学报, 2012, 33, 745.)
(g) Zhu, Q.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813(in Chinese). (朱庆, 王露, 夏春谷, 刘超, 有机化学, 2016, 36, 2813.)
(h) Fan Q.; Liu, J.; Chen J.; Xia, C. Chin. J. Catal. 2012, 33, 1435(in Chinese). (樊启佳, 刘建华, 陈静, 夏春谷, 催化学报, 2012, 33, 1435.)
(i) Jia, X.; Wang, Z.; Xia, C.; Ding, K. Chin. J. Org. Chem. 2013, 33, 1369(in Chinese). (贾肖飞, 王正, 夏春谷, 丁奎岭, 有机化学, 2013, 33, 1369.)
(j) Liu, Q.; Shi, L.; Liu, N. Chin. J. Org. Chem. 2019, 39, 2882(in Chinese). (刘铨瑶, 石磊, 刘宁, 有机化学, 2019, 39, 2882.)
(k) Jiang, H.; Zhang, Y.; Xiong, W.; Cen, J.; Wang, L.; Cheng, R.; Qi, C.; Wu, W. Org. Lett. 2019, 21, 345;
(l) Zhang,Y.; Xiong, W.; Cen, J.; Yan, W.; Wu, Y.; Qi, C.; Wu, W.; Jiang, H. Chem. Commun. 2019, 55, 12304.
(m) Yu, B.; Xie, J. N.; Zhong, C. L.; Li, W.; He, L. N. ACS Catal. 2015, 5, 3940;
(n) Qiu, J.; Gao, S.; Li, C.; Zhang, L.; Wang, Z.; Wang, X.; Ding, K. Chem.-Eur. J. 2019, 25, 13874.
[43] (a) Xie, C.; Chen, C.; Yu, Y. Nano Lett. 2017, 17, 3798.
(b) Ramirez, A.; Ould-Chikh, S.; Gevers, L. ChemCatChem 2019, 11, 2879.
(c) Yang, H.; Zhang, C.; Gao, P. Catal. Sci. Technol. 2017, 7, 4580.
(d) Prieto, G. ChemSusChem 2017, 10, 1056.
(e) Aitbekova, A.; Goodman, E. D.; Wu, L. Angew. Chem., Int. Ed. 2019, 58, 17451.
(f) Saeidi, S.; Amin, N. A. S.; Rahimpour, M. R. J. CO2 Util. 2014, 5, 66.
(g) Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
(h) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978(in Chinese). (李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978.)
(i) Zhang, L.; Han, Z.; Zhang, L.; Li, M.; Ding, K. Chin. J. Org. Chem. 2016, 36, 1824(in Chinese). (张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
(j) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.
(k) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
(l) Dong, K.; Razzaq, R.; Hu, Y.; Ding, K. Top Curr. Chem. 2017, 375, 203.
[44] Wang, H.; Zhao, Y.; Ke, Z.; Yu, B.; Li, R.; Wu, Y.; Wang, Z.; Han, J.; Liu, Z. Chem. Commun. 2019, 55, 3069.
[45] (a) Akatsuka, M.; Kawaguchi, Y.; Itoh, R.; Ozawa, A.; Yamamoto, M.; Tanabe, T.; Yoshida, T. Appl. Catal., B 2020, 262, 118247.
(b) Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T. J. Phys. Chem. C 2017, 121, 8711.
(c) Nakada, A.; Ishitani, O. ACS Catal. 2018, 8, 354.
(d) Takayama, T.; Sato, K.; Fujimura, T.; Kojima, Y.; Iwase A.; Kudo, A. Faraday Discuss. 2017, 198, 397.
(e) Barman, S.; Das, S.; Sreejith S. S.; Garai, S.; Pochamoni, R.; Roy, S. Chem. Commun. 2018, 54, 2369.
(f) Nakanishi, H.; Iizuka, K.; Takayama, T.; Iwase, A.; Kudo, A. ChemSusChem 2017, 10, 112.
(g) Yin, G.; Sako, H.; Gubbala, R. V.; Ueda, S.; Yamaguchi, A.; Abe, H.; Miyauchi, M. Chem. Commun. 2018, 54, 3947.
[46] (a) Xu, S.; Carter, E. A. Chem. Rev. 2019, 119, 6631;
(b) Yuan, Y. P.; Ruan, L. W.; Barber, J. Energy Environ. Sci. 2014, 7, 3934.
(c) Daiyan, R.; Lu, X.; Ng, Y. H. ChemSusChem 2017, 10, 4342.
[47] He, L. N.; Wang, J. Q.; Wang, J. L. Pure Appl. Chem. 2009, 81, 2069.
[48] (a) Lang, X. D.; Yu, Y. C.; He, L. N. J. Mol. Catal. A:Chem. 2016, 420, 208.
(b) Xu, H.; Liu, X. F.; Cao, C. S.; Zhao, B.; Cheng, P.; He, L. N. Adv. Sci. 2016, 3, 1600048.
(c) Cao, C. S.; Xia, S. M.; Song, Z. J.; Xu, H.; Shi, Y.; He, L. N.; Cheng, P.; Zhao, B. Angew. Chem., Int. Ed. 2020, 59, 8586.
[49] (a) Li, Y. N.; He, L. N. Chin. Sci. Bull. 2015, 60, 1465(in Chinese). (李雨浓, 何良年, 科学通报, 2015, 60, 1465.)
(b) Fu, H. C.; Fei, Y.; Li, H. R.; He, L. N. Front. Chem. 2019, 7, 525.
文章导航

/