综述与进展

协同催化模式在金属铱催化不对称烯丙基取代反应中的应用研究进展

  • 田飞 ,
  • 张键 ,
  • 杨武林 ,
  • 邓卫平
展开
  • 华东理工大学药学院 上海市新药设计重点实验室 上海 200237

收稿日期: 2020-05-04

  修回日期: 2020-05-23

  网络出版日期: 2020-06-01

基金资助

国家自然科学基金(Nos.21772038,21901072)、中央高校基本科研业务费(No.222201814048)和上海市青年科技英才扬帆计划(No.18YF140560)资助项目.

Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions via Synergetic Catalysis

  • Tian Fei ,
  • Zhang Jian ,
  • Yang Wulin ,
  • Deng Weiping
Expand
  • School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237

Received date: 2020-05-04

  Revised date: 2020-05-23

  Online published: 2020-06-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772038, 21901072), the Fundamental Research Funds for the Central Universities (No. 222201814048) and the Shanghai Sailing Program (No. 18YF140560).

摘要

铱催化不对称烯丙基取代反应因其特殊的支链区域选择性和优秀的对映选择性已成为合成手性化合物的重要方法之一.采用铱/其他催化剂(有机小分子、过渡金属)协同催化体系能进一步拓宽亲核试剂的类型,并且通过对两种催化剂的调控有可能提高反应的对映选择性,甚至实现多手性中心产物的立体发散性合成.综述了金属铱与有机小分子或其他过渡金属协同催化的不对称烯丙基化反应研究进展.按照催化剂的类型(有机胺催化剂、相转移催化剂、布朗斯特酸、路易斯碱、过渡金属)对这些反应进行了梳理和总结,同时对代表性反应的机理以及该领域仍然存在的问题与未来发展进行了简单阐述.

本文引用格式

田飞 , 张键 , 杨武林 , 邓卫平 . 协同催化模式在金属铱催化不对称烯丙基取代反应中的应用研究进展[J]. 有机化学, 2020 , 40(10) : 3262 -3278 . DOI: 10.6023/cjoc202005008

Abstract

Iridium-catalyzed asymmetric allylic substitution reaction has become one of the most important methods for the synthesis of chiral compounds due to its exceptional branched regioselectivity and excellent enantioselectivity. The scope of nucleophiles will be further expanded by synergetic catalysis system of iridium and other catalysts (organocatalysts, other transition metal catalysts). Besides, it is possible to improve the enantioselectivity of the reaction and even realize the stereodivergent synthesis of the products with multiple stereocenters. The progress in the field of catalytic asymmetric allylic substitutions through synergetic iridium and organocatalysis or other transition metal catalysis is summarized. These reactions are classified according to the types of catalysts (aminocatalyst, phase transfer catalyst, Brønsted acid, Lewis base, transition metal). Meanwhile, the mechanism of representative reactions, the existing problems and the prospects in this area are briefly described.

参考文献

[1] Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395.
[2] Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
[3] Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921
[4] Milhau, L.; Guiry, P. J. Top. Organomet. Chem. 2011, 38, 95.
[5] Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647.
[6] Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am. Chem. Soc. 2001, 123, 9525.
[7] Takeuchi, R. Synlett 2002, 1954.
[8] Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37, 159.
[9] Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.
[10] Moberg, C. Org. React. 2014, 84, 1.
[11] Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104.
[12] Malkov, A. V.; Gouriou, L.; Lloyd-Jones, G. C.; Starý, I.; Langer, V.; Spoor, P.; Vinader, V.; Kočovský, P. Chem.-Eur. J. 2006, 12, 6910.
[13] Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2007, 129, 14548.
[14] Trost, B. M.; Zhang, Y. Chem.-Eur. J. 2010, 16, 296.
[15] Trost, B. M.; Zhang, Y. Chem.-Eur. J. 2011, 17, 2916.
[16] Ozkal, E.; Pericas, M. A. Adv. Synth. Catal. 2014, 356, 711.
[17] Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 462.
[18] Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.
[19] Onitsuka, K.; Matsushima, Y.; Takahashi, S. Organometallics 2005, 24, 6472.
[20] Onitsuka, K.; Okuda, H.; Sasai, H. Angew. Chem., Int. Ed. 2008, 47, 1454.
[21] Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 1869.
[22] Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Org. Lett. 2014, 16, 1470.
[23] Kanbayashi, N.; Hosoda, K.; Kato, M.; Takii, K.; Okamura, T.; Onitsuka, K. Chem. Commun. 2015, 51, 10895.
[24] Leahy, D. K.; Evans, P. A. In Modern Rhodium-Catalyzed Organic Reactions, Ed.:Evans, P. A., John Wiley & Sons, Inc., New York, 2005; p. 191.
[25] Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
[26] Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.
[27] Kazmaier, U.; Stolz, D. Angew. Chem., Int. Ed. 2006, 45, 3072.
[28] Sidera, M.; Fletcher, S. P. Nat. Chem. 2015, 7, 935.
[29] Li, C.; Breit, B. Chem.-Eur. J. 2016, 22, 14655.
[30] Parveen, S.; Li, C.; Hassan, A.; Breit, B. Org. Lett. 2017, 19, 2326.
[31] Didiuk, M. T.; Morken, J. P.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 7273.
[32] Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15.
[33] Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098.
[34] Langlois, J. B.; Alexakis, A. Organomet. Chem. 2011, 38, 235.
[35] Malda, H.; van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169.
[36] Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 6877.
[37] Yoshikai, N.; Zhang, S.-L.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 12862.
[38] Selim, K. B.; Matsumoto, Y.; Yamada, K.; Tomioka, K. Angew. Chem., Int. Ed. 2009, 48, 8733.
[39] Langlois, J.-B.; Alexakis, A. Adv. Synth. Catal. 2010, 352, 447.
[40] Shi, Y.; Jung, B.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2015, 137, 8948.
[41] You, H.; Rideau, E.; Sidera, M.; Fletcher, S. P. Nature 2015, 517, 351.
[42] Rideau, E.; You, H.; Sidera, M.; Claridge, T. D.W.; Fletcher, S. P. J. Am. Chem. Soc. 2017, 139, 5614.
[43] Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 4387.
[44] Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.
[45] Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 396.
[46] Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
[47] Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
[48] Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. 1997, 36, 263.
[49] Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.
[50] Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
[51] Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2011, 38, 155.
[52] Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.
[53] Cheng, Q.; Tu, H.; Zheng, C.; Qu J.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.
[54] Deng, Y.; Yang, W.; Yang, X.; Yang, D. Chin. J. Org. Chem. 2017, 37, 3039(in Chinese). (邓颖颍, 杨文, 杨新, 杨定乔, 有机化学, 2017, 37, 3039.)
[55] Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.
[56] Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2010, 2999.
[57] Zhou, J. Chem. Asian J. 2010, 5, 422.
[58] Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.
[59] Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.
[60] Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.
[61] Inamdar, S. M.; Shinde, V.S.; Patil, N. T. Org. Biomol. Chem. 2015, 13, 8116.
[62] Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.
[63] Zhang, M.-M.; Luo, Y.-L.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838(in Chinese). (张毛毛, 骆元元, 陆良秋, 肖文精, 化学学报, 2018, 76, 838).
[64] Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.
[65] Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
[66] Xu, L.-W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 1807.
[67] Gualandi, A.; Mengozzi, L.; Wilson, C. M.; Cozzi, P. G. Chem. Asian J. 2014, 9, 984.
[68] Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.
[69] Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
[70] Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
[71] Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
[72] Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898.
[73] Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.
[74] For an example of water as a nucleophile in allylic substitution, see:Lüssem, B. J.; Gais, H.-J. J. Am. Chem. Soc. 2003, 125, 6066.
[75] Sandmeier, T.; Goetzke, F. W.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2019, 141, 12212.
[76] Sandmeier, T.; Carreira, E. M. Org. Lett. 2020, 22, 1135.
[77] Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.
[78] Liang, X.; Zhang, T.-Y.; Meng, C.-Y.; Li, X.-D.; Wei, K.; Yang, Y.-R. Org. Lett. 2018, 20, 4575.
[79] Yao, J.-N.; Liang, X.; Wei, K.; Yang, Y.-R. Org. Lett. 2019, 21, 8485.
[80] Zhang, M.-M.; Wang, Y.-N.; Wang, B.-C.; Chen, X.-W.; Lu, L.-Q.; Xiao, W.-J. Nat. Commun. 2019, 10, 2716.
[81] Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101.
[82] Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
[83] Pellissier, H. Tetrahedron 2017, 73, 2831.
[84] Chen, Z.-C.; Chen, Z.; Yang, Z.-H.; Guo, L.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2019, 58, 15021.
[85] Chen, P.; Li, Y.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2020, 59, 7083.
[86] Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
[87] Chen, G.; Deng, Y.; Gong, L.-Z; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C.; Chan, A. S. Tetrahedron: Asymmetry 2001, 21, 1567.
[88] Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.
[89] Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, H.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197.
[90] Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 3, 994.
[91] Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2013, 52, 7532.
[92] Su, Y.-L; Li, Y.-H.; Chen, Y.-G.; Han, Z.-Y. Chem. Commun. 2017, 53, 1985.
[93] Jiang, X.; Hartwig, J. F. Angew. Chem., Int. Ed. 2017, 56, 8887.
[94] Wei, L.; Xiao, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Chin. J. Chem. 2020, 38, 82.
[95] Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
[96] Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
[97] Shen, D.; Chen, Q.; Yan, P.; Zeng, X.; Zhong, G. Angew. Chem., Int. Ed. 2017, 56, 3242.
[98] Jellerichs, B. G.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758.
[99] Birman, V. B.; Ulffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226.
[100] Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478.
[101] Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.; Snaddon, T. N. J. Am. Chem. Soc. 2016, 138, 5214.
[102] Jiang, X.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.
[103] Ye, K.-Y.; Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 8113.
[104] Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C. G.; Glorius, F. Nat. Catal. 2020, 3, 48.
[105] Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
[106] He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513.
[107] Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.
[108] Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.
[109] Zhang, J.; Huo, X.; Li, B.; Chen, Z.; Zou, Y.; Sun, Z.; Zhang, W. Adv. Synth. Catal. 2019, 361, 1130.
[110] Jiang, X.; Boehm, P.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1239.
[111] Xu, S.-M.; Wei, L.; Shen, C.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 5553.
[112] Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 4812.
[113] Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 1594.
[114] Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. 2016, 6, 3381.
文章导航

/