研究论文

薁封端的引达省并二噻吩类衍生物的设计合成及性质研究

  • 彭培珍 ,
  • 李晶 ,
  • 侯斌 ,
  • 辛涵申 ,
  • 程探宇 ,
  • 高希珂
展开
  • a 上海师范大学化学与材料科学学院 上海 200234;
    b 中国科学院上海有机化学研究所 中国科学院有机功能分子合成与组装化学重点实验室 上海 200032

收稿日期: 2020-05-06

  修回日期: 2020-05-22

  网络出版日期: 2020-06-01

基金资助

国家自然科学基金(Nos.21522209,21790362)和上海市科学技术委员会(Nos.19XD1424700,18JC1410600)资助项目.

Design, Synthesis and Properties of Indacenodithiophene Derivatives End-Capped with Azulene

  • Peng Peizhen ,
  • Li Jing ,
  • Hou Bin ,
  • Xin Hanshen ,
  • Cheng Tanyu ,
  • Gao Xike
Expand
  • a College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234;
    b Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2020-05-06

  Revised date: 2020-05-22

  Online published: 2020-06-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21522209, 21790362), and the Science and Technology Commission of Shanghai Municipality (Nos. 19XD1424700, 18JC1410600).

摘要

根据薁五元环的富电子性和七元环的缺电子性,设计合成了两个基于引达省并二噻吩(IDT)和薁的同分异构体化合物12,对其紫外-可见吸收光谱、电化学及质子响应等物理化学性质进行了研究.化合物12在物理化学性质和有机场效应晶体管(OFET)器件性能方面表现出明显差异,均具有可逆的质子响应特性,质子化之前的末端吸收峰在400到600 nm之间,随着TFA的加入,吸收峰红移至550到850 nm之间,充分质子化时(TFA体积比约为1%)分别红移了约200和177 nm.化合物12质子化之前在二氯甲烷溶液中的颜色均为红色,充分质子化后变为蓝色,加入三乙胺恢复至原来的颜色.采用旋涂的方法制备了化合物12的OFET薄膜器件,其空穴迁移率表现出数量级的差异,分别为4.14×10-3和1.05×10-5 cm2·V-1·s-1.研究结果表明,薁通过缺电子的七元环和富电子的五元环与IDT不同的键连方式,对相应材料的OFET器件性能和物理化学性质有较大影响,为研究基于薁的有机功能分子提供了新思路.

本文引用格式

彭培珍 , 李晶 , 侯斌 , 辛涵申 , 程探宇 , 高希珂 . 薁封端的引达省并二噻吩类衍生物的设计合成及性质研究[J]. 有机化学, 2020 , 40(11) : 3916 -3924 . DOI: 10.6023/cjoc202005014

Abstract

Two isomers of azulene and indacenodithiophene (IDT)-based compounds 1 and 2 were designed and synthesized, according to the different connections of azulene unit with IDT through its electron-rich five-membered ring and the electron-deficient seven-membered ring, respectively. The UV-Vis spectra, electrochemical properties and proton-responsive properties of 1 and 2 were studied. Compounds 1 and 2 show obviously different physicochemical properties and device performance of organic field-effect transistors (OFET). Both compounds 1 and 2 have reversible proton response characteristics. The end absorption peaks of these two compounds are between 400 and 600 nm before protonation. With the addition of trifluoroacetic acid (TFA), the absorption peaks are red shifted to 550~850 nm. When they are protonated fully (TFA volume ratio is about 1%), they are red shifted about 200 and 177 nm, respectively. The color of compounds 1 and 2 in dichloromethane solution before protonation is red after the adequate protonation. It turned to blue and returned to its original color after the addition of triethylamine. OFET thin film devices of 1 and 2 showed an order of magnitude difference, with hole mobilities of 4.14×10-3 and 1.05×10-5 cm2·V-1·s-1, respectively. The different connections of IDT and azulene units through the electronic rich five-membered ring and the electronic deficient seven-membered ring of azulene greatly affect the materials’ device performance as well as their physicochemical properties, providing valuable insights for developing azulene-based novel organic functional molecules.

参考文献

[1] Lemal, D. M.; Goldman, G. D. J. Chem. Educ. 1988, 65, 923.
[2] (a) Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.
(b) Dong, J.; Zhang, H. Chin. Chem. Lett. 2016, 27, 1097.
(c) Ou, L.; Zhou, Y.; Wu, B.; Zhu, L. Chin. Chem. Lett. 2019, 30, 1903.
[3] (a) Cristian, L.; Sasaki, I.; Lacroix, P. G.; Donnadieu, B.; Asselberghs, I.; Clays, K.; Razus, A. C. Chem. Mater. 2004, 16, 3543.
(b) Migalska-Zalas, A.; El kouari, Y.; Touhtouh, S. Opt. Mater. 2012, 34, 1639.
(e) Wang, X.; Ng, J. K.-P.; Jia, P.; Lin, T.; Cho, C. M.; Xu, J.; Lu, X.; He, C. Macromolecules 2009, 42, 5534.
[4] (a) Yamaguchi, Y.; Maruya, Y.; Katagiri, H.; Nakayama, K.-I.; Ohba, Y. Org. Lett. 2012, 14, 2316.
(b) Yamaguchi, Y.; Ogawa, K.; Nakayama, K.-I.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095.
(c) Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.-I.; Koganezawa, T.; Katagiri, H. J. Am. Chem. Soc. 2016, 138, 1133.
(d) Xin, H.; Li, J.; Ge, C.; Yang, X.; Xue, T.; Gao, X. Mater. Chem. Front. 2018, 2, 975.
(e) Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem. Int. Ed. 2018, 57, 1322.
(f) Xin, H.; Ge, C.; Gao, H.; Yang, X.; Gao, X. Chem. Sci. 2016, 7, 6701.
[5] (a) Xia, J.; Capozzi, B.; Wei, S.; Strange, M.; Batra, A.; Moreno, J. R.; Amir, R. J.; Amir, E.; Solomon, G. C.; Venkataraman, L. Nano Lett. 2014, 14, 2941.
(b) Schwarz, F.; Koch, M.; Kastlunger, G.; Berke, H.; Stadler, R.; Venkatesan, K.; Lortscher, E. Angew. Chem. Int. Ed. 2016, 55, 11781.
(c) Yang, G.; Sara, S.; Liu, Z.; Li, X.; Hatef, S.; Tan, Z.; Li, R.; Zheng, J.; Dong, X.; Liu, J.; Yang, Y.; Shi, J.; Xiao, Z; Zhang, G.; Colin, L.; Hong, W.; Zhang, D. Chem. Sci. 2017, 8, 7505.
(d) Cai, S.; Deng, W.; Huang, F.; Chen, L.; Tang, C.; He, W.; Long, S.; Li, R.; Tan, Z.; Liu, J.; Xiao, Z.; Zhang, D.; Hong, W. Angew. Chem. Int. Ed. 2019, 58, 1.
(e) Huang, C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J.-T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; Petersen, A. U.; Wandlowski, T.; Mikkelsen, K. V.; Solomon, G. C.; Brøndsted Nielsen, M.; Hong, W. Nat. Commun. 2017, 8, 15436.
[6] Puodziukynaite, E.; Wang, H. W.; Lawrence, J.; Wise, A. J.; Rus-sell, T. P.; Barnes, M. D.; Emrick, T. J. Am. Chem. Soc. 2014, 136, 11043.
[7] Zhou, Y.; Zhuang, Y.; Li, X.; Hans, A.; Yu, L.; Ding, J.; Zhu, L. Chem. Eur. J. 2017, 23, 7642.
[8] (a) Wang, X.; Ng, J. K.-P.; Jia, P.; Lin, T.; Cho, C. M.; Xu, J.; Lu, X.; He, C. Macromolecules 2009, 42, 5534.
(b) Tsurui, K.; Murai, M.; Ku, S.-Y.; Hawker, C. J.; Robb, M. J. Adv. Funct. Mater. 2014, 24, 7338.
[9] Xin, H.; Ge, C.; Fu, L.; Yang, X.; Gao, X. Chin. J. Org. Chem. 2017, 37, 711(in Chinese). (辛涵申, 葛从武, 傅丽娜, 杨笑迪, 高希珂, 有机化学, 2017, 37, 711.)
[10] Ran, H.; Duan, X.; Zheng, R.; Xie, F.; Chen, L.; Zhao, Z.; Han, R.; Lei, Z.; Hu, J. ACS Appl. Mater. Interfaces 2020, 12, 23225.
[11] Zhai, W..; Zhou, E. Chin. J. Org. Chem. 2016, 36, 2786(in Chinese). (翟文超, 周二军, 有机化学, 2016, 36, 276.)
[12] (a) Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C.; Li, T.; Wang, Y.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X. J. Am. Chem. Soc. 2016, 138, 2973.
(b) Cai, L. P.; Moehl, T.; Moon, S. J.; Decoppet, J. D.; Robin, H. B.; Xue, Z. S.; Liu, B.; Zakeeruddin, S. M.; Grätzel, M. Org. Lett. 2014, 16, 106.
[13] (a) Nozoe, T.; Takase, K.; Shimazaki, N. Bull. Chem. Soc. Jpn. 1964, 37, 1644.
(b) Nozoe, T.; Seto, S.; Matsumura, S.; Murase, Y. Bull. Chem. Soc. Jpn. 1962, 35, 1179.
(c) McDonald, R. N.; Richmond, J. M.; Curtis, J. R.; Petty, H. E.; Hoskins, T. L. J. Org. Chem. 1976, 41, 1811.
(d) Gao, H.; Yang, X.; Xin, H.; Gao, T.; Gong, H.; Gao, X. Chin. J. Org. Chem. 2018, 38, 2680(in Chinese). (高洪磊, 杨笑迪, 辛涵申, 高铁阵, 龚和贵, 高希珂, 有机化学, 2018, 38, 2680.)
(e) Zhang, J.; Petoud, S. Chem. Eur. J. 2008, 14, 1264.
(f) Huang, H.; Du, Z.; Huang, C.; Zhang, J.; Liu, S.; Fu. N.; Zhao, B.; Yang, R.; Huang, W. Polymer 2019, 162, 11.
(g) Bai, H.; Wang, Y.; Cheng, P.; Li, Y.; Zhu, D.; Zhan, X. ACS Appl. Mater. Interfaces 2014, 6, 8426.
文章导航

/