综述与进展

无过渡金属参与下Selectfluor作为“无氟”官能化试剂在有机合成中的应用

  • 孔瑶蕾 ,
  • 孙晓彤 ,
  • 翁建全
展开
  • 浙江工业大学化学工程学院 杭州 310014

收稿日期: 2020-04-02

  修回日期: 2020-05-13

  网络出版日期: 2020-06-13

基金资助

浙江省自然科学基金(No.LY17C140003)资助项目.

Selectfluor as “Fluorine-Free” Functional Reagent Applied to Organic Synthesis under Transition Metal-Free Conditions

  • Kong Yaolei ,
  • Sun Xiaotong ,
  • Weng Jianquan
Expand
  • College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2020-04-02

  Revised date: 2020-05-13

  Online published: 2020-06-13

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17C140003).

摘要

Selectfluor是一种性能优越的商品化的亲电氟化试剂,广泛应用于氟化反应中.近年来Selectfluor作为"无氟"官能化试剂在有机合成中得到较广泛的应用,尤其是利用Selectfluor与过渡金属的协同催化体系催化反应,取得了较大的进展.然而,该催化体系存在过渡金属价格昂贵、污染环境等问题.因此,Selectfluor作为"无氟"官能化试剂在无过渡金属参与下的应用受到越来越多的关注.根据反应类型综述了无过渡金属参与下Selectfluor作为"无氟"官能化试剂在有机合成中的应用,并对其前景进行了展望.

本文引用格式

孔瑶蕾 , 孙晓彤 , 翁建全 . 无过渡金属参与下Selectfluor作为“无氟”官能化试剂在有机合成中的应用[J]. 有机化学, 2020 , 40(9) : 2641 -2657 . DOI: 10.6023/cjoc202004005

Abstract

Selectfluor, a commercial electrophilic fluorination reagent with superior performance, is widely used in fluorination reactions. In recent years, Selectfluor has also been widely applied as "fluorine-free" functional reagent in organic synthesis. Especially the application of Selectfluor/transition metals synergetic catalytic system has made great progress. However, this catalytic system has some disadvantages, such as the use of expensive transition metals and environmental unfriendliness. Therefore, more and more attention has been paid to the application of Selectfluor as "fluorine-free" functional reagent under transition metal-free conditions. In this paper, classified by the type of reactions, the research progress of Selectfluor as a "fluorine-free" functional reagent in organic synthesis under transition metal-free conditions is reviewed, and their future outlook is also discussed.

参考文献

[1] Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31.
[2] Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
[3] Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073.
[4] Huang, Y.-L.; Chen, Q. Chin. J. Org. Chem. 2017, 37, 2745(in Chinese). (黄昱霖, 陈迁, 有机化学, 2017, 37, 2745.)
[5] Tian, Y.; Zhou, G.; Zhao, X.; Dan, W. Acta Chim. Sinica 2018, 76, 962(in Chinese). (田亚伟, 周刚, 赵晓明, 淡文彦, 化学学报, 2018, 76, 962.)
[6] Hu, J.; Yang, Y.; Lou, Z.; Ni, C.; Hu, J. Chin. J. Chem. 2018, 36, 1202.
[7] Kandula, V.; Thota, P. K.; Mallesham, P.; Raghavulu, K.; Chatterjee, A.; Yennam, S.; Behera, M. Synlett 2019, 30, 2295.
[8] Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322.
[9] Stavber, S. Molecules 2011, 16, 6432.
[10] Yang, K.; Song, M.-J.; Ali, A. I. M.; Mudassir, S. M.; Ge, H.-B. Chem. Asian J. 2020, 15, 729.
[11] Brand, J. P.; Li, Y.; Waser, J. Isr. J. Chem. 2013, 53, 901.
[12] Miro, J.; Del Pozo, C. Chem. Rev. 2016, 116, 11924.
[13] Zhu, S.-F.; Chen, K. Synlett 2017, 28, 640.
[14] Xu, Q.; Gu, P.; Wang, F.-J.; Shi, M. Org. Chem. Front. 2015, 2, 1475.
[15] Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048.
[16] Fu, M.-L.; Liu, J.-B.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 3702.
[17] Zhang, J.; Wang, H.; Ren, S.-B.; Zhang, W.-X.; Liu, Y.-K. Chin. J. Org. Chem. 2015, 35, 2650(in Chinese). (张剑, 汪衡, 任少波, 张文霞, 刘运奎, 有机化学, 2015, 35, 2650.)
[18] Zheng, L.-M.; Shi, D.-D.; Bao, H.-Y.; Liu, Y.-K. Chin. J. Org. Chem. 2019, 39, 2821(in Chinese). (郑立孟, 施冬冬, 鲍汉扬, 刘运奎, 有机化学, 2019, 39, 2821.)
[19] Shi, D.-D.; Bao, H.-Y.; Xu, Z.; Liu, Y.-K. Chin. J. Org. Chem. 2017, 37, 1290(in Chinese). (施冬冬, 鲍汉扬, 徐峥, 刘运奎, 有机化学, 2017, 37, 1290.)
[20] Samanta, S.; Hajra, A. J. Org. Chem. 2019, 84, 4363.
[21] Kumaraswamy, G.; Gangadhar, M.; Ramesh, V.; Ankamma, K.; Sridhar, B. Org. Lett. 2019, 21, 6300.
[22] Daniels, M. H.; Hubbs, J. Tetrahedron Lett. 2011, 52, 3543.
[23] Liu, L.; Wang, J.-B.; Zhou, H.-W. J. Org. Chem. 2015, 80, 4749.
[24] Liang, X.-A.; Niu, L.-B.; Wang, S.-C.; Liu, J.-M.; Lei, A. Org. Lett. 2019, 21, 2441.
[25] Niu, L.-B.; Liu, J.-M.; Liang, X.-A.; Wang, S.-C.; Lei, A. Nat. Commun. 2019, 10, 467.
[26] Zhao, H.; Jin, J. Org. Lett. 2019, 21, 6179.
[27] Galloway, J. D.; Baxter, R. D. Tetrahedron 2019, 75, 130665.
[28] Shi, D.; Qin, H.-T.; Zhu, C.; Liu, F. Eur. J. Org. Chem. 2015, 2015, 5084.
[29] Lv, Y.-H.; Sun, K.; Pu, W.-Y.; Mao, S.-K.; Li, G.; Niu, J.-J.; Chen, Q.; Wang, T.-T. RSC Adv. 2016, 6, 93486.
[30] Sun, B.; Yin, S.; Zhuang, X.-H.; Jin, C.; Su, W.-K. Org. Biomol. Chem. 2018, 16, 6017.
[31] Yuan, J.-W.; Zeng, F.-L.; Mai, W.-P.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Wei, D.-H. Org. Biomol. Chem. 2019, 17, 5038.
[32] Yang, Z.; Chen, S.-W.; Yang, F.; Zhang, C.-X.; Dou, Y.; Zhou, Q.-J.; Yan, Y.-Z.; Tang, L. Eur. J. Org. Chem. 2019, 5998.
[33] Tang, L.; Yang, Z.; Yang, F.; Huang, Y.-F.; Chen, H.-F.; Cheng, H.; Song, W.-Y.; Ren, B.; Zhou, Q.-J. ChemistrySelect 2019, 4, 12053.
[34] Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034.
[35] Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Chem. Lett. 2008, 37, 652.
[36] Abonia, R.; Gutierrez, L. F.; Zwarycz, A. T.; Correa Smits, S.; Laali, K. K. Heteroat. Chem. 2019, 2019, 1.
[37] Wu, D.-Z.; Yang, X.-J.; Wu, L.-Q. J. Chem. Sci. 2012, 124, 901.
[38] Khazaei, A.; Rahmati, S.; Khalafi-nezhad, A.; Saednia, S. J. Fluorine Chem. 2012, 137, 123.
[39] Chen, Y.; Qi, H.-Y.; Chen, N.; Ren, D.-M.; Xu, J.-X.; Yang, Z.-H. J. Org. Chem. 2019, 84, 9044.
[40] Li, X.-F.; Fu, X.-L.; Huang, Y.-L.; Yan, Z.-Y. J. Chem. Res. 2018, 202.
[41] Huang, Y.-L.; Lei, J.-Y.; Fu, X.-L.; Xie, W.-L.; Li, X.-F. J. Chem. Res. 2019, 43, 179.
[42] Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.
[43] Yuan, J.-W.; Zhu, J.-L.; Li, B.; Yang, L.-Y.; Mao, P.; Zhang, S.-R.; Li, Y.-C.; Qu, L.-B. Org. Biomol. Chem. 2019, 17, 10178.
[44] Chen, Q.; Zeng, J.-K.; Yan, X.-X.; Huang, Y.-L.; Wen, C.-X.; Liu, X.-G.; Zhang, K. J. Org. Chem. 2016, 81, 10043.
[45] Yang, K.; Zhang, H.; Niu, B.; Tang, T.-D.; Ge, H.-B. Eur. J. Org. Chem. 2018, 2018, 5520.
[46] Mai, W.-P.; Yuan, J.-W.; Zhu, J.-L.; Li, Q.-Q.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. ChemistrySelect 2019, 4, 11066.
[47] Zupan, M.; Iskra, J.; Stavber, S. Tetrahedron Lett. 1997, 38, 6305.
[48] Chiappe, C.; Pieraccini, D. ARKIVOC 2002, 249.
[49] Stavber, S.; Jereb, M.; Zupan, M. Chem. Commun. 2002, 488.
[50] Jereb, M.; Stavber, S.; Zupan, M. Tetrahedron 2003, 59, 5935.
[51] Ye, C.-F.; Shreeve, J. M. J. Org. Chem. 2004, 69, 8561.
[52] Pavlinac, J.; Zupan, M.; Stavber, S. J. Org. Chem. 2006, 71, 1027.
[53] Krow, G. R.; Gandla, D.; Guo, W. W.; Centafont, R. A.; Lin, G. L.; DeBrosse, C.; Sonnet, P. E.; Ross, C. W.; Ramjit, H. G.; Cannon, K. C. J. Org. Chem. 2008, 73, 2122.
[54] Khupse, R. S.; Erhardt, P. W. Org. Lett. 2008, 10, 5007.
[55] Mal, D.; De, S. R. Org. Lett. 2009, 11, 4398.
[56] Laali, K. K.; Nandi, G. C.; Bunge, S. D. Tetrahedron Lett. 2014, 55, 2401.
[57] Shi, L.-L.; Zhang, D.-M.; Lin, R.-Y.; Zhang, C.; Li, X.; Jiao, N. Tetrahedron Lett. 2014, 55, 2243.
[58] Dannenberg, C. A.; Bizet, V.; Zou, L.-H.; Bolm, C. Eur. J. Org. Chem. 2015, 2015, 77.
[59] Liang, D.-Q.; Li, X.-G.; Wang, C.-W.; Dong, Q.-S.; Wang, B.-L.; Wang, H. Tetrahedron Lett. 2016, 57, 5390.
[60] Huang, B.-B.; Zhao, Y.-T.; Yang, C.; Gao, Y.; Xia, W.-J. Org. Lett. 2017, 19, 3799.
[61] Qi, H.; Li, X.; Liu, Z.; Miao, S.-S.; Fang, Z.; Chen, L.; Fang, Z.; Guo, K. ChemistrySelect 2018, 3, 10689.
[62] Scheidt, F.; Neufeld, J.; Schafer, M.; Thiehoff, C.; Gilmour, R. Org. Lett. 2018, 20, 8073.
[63] Sarie, J. C.; Neufeld, J.; Daniliuc, C. G.; Gilmour, R. ACS Catal. 2019, 9, 7232.
[64] Hu, J.; Zhou, G.; Tian, Y.-W.; Zhao, X.-M. Org. Biomol. Chem. 2019, 17, 6342.
[65] Blank, S. J.; Stephens, C. E. Tetrahedron Lett. 2006, 47, 6849.
[66] Kirihara, M.; Naito, S.; Ishizuka, Y.; Hanai, H.; Noguchi, T. Tetrahedron Lett. 2011, 52, 3086.
[67] Wu, D.-G.; Zhang, J.; Wang, H.; Zhang, J.-H.; Liu, Y.-K.; Liu, M.-C. Asian J. Org. Chem. 2014, 3, 1163.
[68] Wang, H.; Ren, S.-B.; Zhang, J.; Zhang, W.; Liu, Y.-K. J. Org. Chem. 2015, 80, 6856.
[69] Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. Tetrahedron 2014, 70, 7505.
[70] Lv, Y.-H.; Wang, X.; Cui, H.; Sun, K.; Pu, W.-Y.; Li, G.; Wu, Y.-T.; He, J.-L.; Ren, X.-R. RSC Adv. 2016, 6, 74917.
[71] Allmann, T. C.; Moldovan, R. P.; Jones, P. G.; Lindel, T. Chem. Eur. J. 2016, 22, 111.
[72] Chen, Q.; Zeng, J.-K.; Yan, X.-X,; Huang, Y.-L.; Du, Z.-Y.; Zhang, K.; Wen, C.-X. Tetrahedron Lett. 2016, 57, 3379.
[73] Bohlmann, R.; Hauser, A. Synlett 2016, 27, 1870.
[74] Jiang, X.-J.; Yang, J.-J.; Zhang, F.; Yu, P.; Yi, P.; Sun, Y.-W.; Wang, Y.-Q. Org. Lett. 2016, 18, 3154.
[75] Xie, L.-Y.; Peng, S.; Liu, F.; Yi, J.-Y.; Wang, M.; Tang, Z.; Xu, X.; He, W.-M. Adv. Synth. Catal. 2018, 360, 4259.
[76] Shah, S. T. A.; Singh, S.; Guiry, P. J. J. Org. Chem. 2009, 74, 2179.
[77] Xie, L.-J.; Wang, R.-L.; Wang, D.; Liu, L.; Cheng, L. Chem. Commun. 2017, 53, 10734.
[78] Wang, S.-C.; Liu, J.-M.; Niu, L.-B.; Yi, H.; Chiang, C.-W.; Lei, A. J. Photochem. Photobiol., A 2018, 355, 120.
[79] Zeng, Y.-J.; Duan, Y.; Zhao, H.; Hu, X.-G. Chin. J. Org. Chem. 2018, 38, 1712(in Chinese). (曾逸杰, 段岳, 赵辉, 胡祥国, 有机化学, 2018, 38, 1712.)
[80] Yadav, J. S.; Reddy, B. V. S.; Sunitha, V.; Reddy, K. S. Adv. Synth. Catal. 2003, 345, 1203.
[81] Kumar, B. S.; Reddy, Y. T.; Reddy, P. N.; Kumar, P. S.; Rajitha, B. J. Heterocyclic Chem. 2006, 43, 477.
[82] Ranjbar-Karimi, R.; Hashemi-Uderji, S.; Mousavi, M. J. Iran. Chem. Soc. 2011, 8, 193.
[83] Heravi, M. R. P. J. Iran. Chem. Soc. 2009, 6, 483.
[84] Ye, W.-M.; Li, W.-B.; Zhang, J.-L. Chem. Commun. 2014, 50, 9879.
[85] Wei, D.-L.; Li, Y.-R.; Liang, F.-S. Adv. Synth. Catal. 2016, 358, 3887.
[86] Yan, D.-M.; Zhao, Q.-Q.; Rao, L.; Chen, J.-R.; Xiao, W.-J. Chem. Eur. J. 2018, 24, 16895.
[87] Gao, Y.-J.; Hider, R. C.; Ma, Y.-M. RSC Adv. 2019, 9, 10340.
[88] Chen, J.; Ding, Y.-X.; Gao, Y.-J.; Zhou, D.-H.; Hider, R.; Ma, Y.-M. Chemistryselect 2019, 4, 2404.
[89] He, G.-K.; Li, Y.; Yu, Z.-L.; Chen, Z.-Q.; Tang, Y.-M.; Song, G.-L.; Loh, T. P. Org. Chem. Front. 2019, 6, 3644.
[90] Wu, F.; Alom, N. E.; Ariyarathna, J. P.; Nass, J.; Li, W. Angew. Chem.. Int. Ed. 2019, 58, 11676.
[91] Liu, J.-J.; Wong, C.-H. Tetrahedron Lett. 2002, 43, 3915.
[92] Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S. Tetrahedron Lett. 2004, 45, 1291.
[93] Shinu, V. S.; Sheeja, B.; Purushothaman, E.; Bahulayan, D. Tetrahedron Lett. 2009, 50, 4838.
[94] Sun, K.; Zhu, Z.-H.; Sun, J.-J.; Liu, L.-L.; Wang, X. J. Org. Chem. 2016, 81, 1476.
[95] Muñiz, K.; Wöste, T. Synthesis 2016, 48, 816.
[96] Rezayati, S.; Hajinasiri, R.; Erfani, Z. Res. Chem. Intermed. 2016, 42, 2567.
[97] Yan, M.; Zhou, D.-H.; Gao, Y.-J.; Ma, Y.-M. ChemistrySelect 2018, 3, 13006.
[98] Cao, Y.; Zhou, D.-H.; Ma, Y.-M. Can. J. Chem. 2019, 97, 37.
[99] Gao, Y.-J.; Zhou, D.-H.; Ma, Y.-M. ChemistrySelect 2018, 3, 9374.
[100] Sharma, P.; Sharma, R. K. Chirality 2019, 31, 91.
[101] Yang, K.; Li, Y.; Ma, Z.-Y.; Tang, L.; Yin, Y.; Zhang, H.; Li, Z.-Y.; Sun, X.-Q. Eur. J. Org. Chem. 2019, 2019, 5812.
[102] Bao, H.-Y.; Hu, X.-J.; Zhang, J.; Liu, Y.-K. Tetrahedron 2019, 75, 130533.
[103] Yang, K.; Niu, B.; Ma, Z.-Y.; Wang, H.; Lawrence, B.; Ge, H.-B. J. Org. Chem. 2019, 84, 14045.
[104] Xu, W.-X.; Dai, X.-Q.; Xu, H.-J.; Weng, J.-Q. Chin. J. Org. Chem. 2018, 38, 2807(in Chinese). (徐雯秀, 戴小强, 徐涵靖, 翁建全, 有机化学, 2018, 38, 2807.)
[105] Kong, Y.-L.; Xu, W.-X.; Ye, F.-X.; Weng, J.-Q. Chin. J. Org. Chem. 2019, 39, 3065(in Chinese). (孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.)
[106] Tréguier, B.; Roche, S. P. Org. Lett. 2014, 16, 278.
[107] Liang, D.-Q.; Li, X.-G.; Lan, Q.; Huang, W.-Z.; Yuan, L.; Ma, Y.-H. Tetrahedron Lett. 2016, 57, 2207.
[108] Liang, D.-Q.; Li, Y.-N.; Gao, S.-L.; Li, R.-L.; Li, X.-G.; Wang, B.-L.; Yang, H. Green Chem. 2017, 19, 3344.
文章导航

/