综述与进展

钯催化的烯丙基取代反应中烯丙基醇的高效活化

  • 马献涛 ,
  • 于静 ,
  • 王子龙 ,
  • 张赟 ,
  • 周秋菊
展开
  • 信阳师范学院化学化工学院 信阳市绿色催化和合成重点实验室 河南信阳 464000

收稿日期: 2020-05-06

  修回日期: 2020-05-24

  网络出版日期: 2020-06-13

基金资助

河南省科技攻关(No.192102310031)、河南省高等学校重点科研(No.19B150018)、信阳师范学院“南湖学者奖励计划”青年和信阳师范学院青年骨干教师资助计划(No.2018GGJS-05)资助项目.

Efficient Activation of Allylic Alcohols in Pd-Catalyzed Allylic Substitution Reactions

  • Ma Xiantao ,
  • Yu Jing ,
  • Wang Zilong ,
  • Zhang Yun ,
  • Zhou Qiuju
Expand
  • Green Catalysis & Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000

Received date: 2020-05-06

  Revised date: 2020-05-24

  Online published: 2020-06-13

Supported by

Project supported by the Key Scientific and Technological Project of Henan Province (No. 192102310031), the Key Scientific Research Project of Universities of Henan Province (No. 19B150018), the Nanhu Scholars Program for Young Scholars of Xinyang Normal University and the Young Core Instructor Program of Xinyang Normal University (No. 2018GGJS-05).

摘要

由于烯丙基醇的碳-氧键较为惰性,烯丙基醇的高效活化是烯丙基取代反应研究中的一个重要方向.近年来,非经典的外加酸活化以及无外加活化剂条件下烯丙基醇的高效活化及取代反应得到了快速发展,为烯丙基醇的高效活化提供了新的研究思路.根据烯丙基醇的活化方式及机制对这些研究进展进行了简要论述.

本文引用格式

马献涛 , 于静 , 王子龙 , 张赟 , 周秋菊 . 钯催化的烯丙基取代反应中烯丙基醇的高效活化[J]. 有机化学, 2020 , 40(9) : 2669 -2677 . DOI: 10.6023/cjoc202005013

Abstract

Owing to the poor leaving character of hydroxy group, the efficient activation of allylic alcohols is important to allylic substitution reaction. In recent years, the efficient activation of allylic alcohols by non-typical acid activators and even no extra activators has been rapidly developed, and provides a novel approach to efficient activation of allylic alcohols. The recent developments in this area are summarized on the basis of different activation modes and mechanisms.

参考文献

[1] Tsuji, J. Acc. Chem. Res. 1969, 2, 144.
[2] Trost, B. M. Tetrahedron 1977, 33, 2615.
[3] Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
[4] Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
[5] Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. 2003, 36, 659.
[6] Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747
[7] Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
[8] Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.
[9] Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z Acc. Chem. Res. 2014, 47, 2365.
[10] Zhang, M.-M.; Luo, Y.-Y.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838(in Chinese). (张毛毛, 骆元元, 陆良秋, 肖文精, 化学学报, 2018, 76, 838.)
[11] Zhang, H.-H.; Yu, S. Acta Chim. Sinica 2019, 77, 832(in Chinese). (张洪浩, 俞寿云, 化学学报, 2019, 77, 832.)
[12] Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
[13] Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
[14] Deng, Y.; Yang, W.; Yang, X.; Yang, D. Chin. J. Org. Chem. 2017, 37, 3039(in Chinese). (邓颖颍, 杨文, 杨新, 杨定乔, 有机化学, 2017, 37, 3039.)
[15] Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.
[16] Shen, D.; Chen, Q.; Yan, P.; Zeng, X.; Zhong, G. Angew. Chem., Int. Ed. 2017, 56, 3242.
[17] Zhang, H.; Gu, Q.; You, S. Chin. J. Org. Chem. 2019, 39, 15(in Chinese). (张慧君, 顾庆, 游书力, 有机化学, 2019, 39, 15.)
[18] Turnbull, B. W. H.; Evans, P. A. J. Org. Chem. 2018, 83, 11463.
[19] Thoke, M. B.; Kang, Q. Synthesis 2019, 51, 2585.
[20] Bruneau, C.; Renaud, J.-L.; Demerseman, B. Chem.-Eur. J. 2006, 12, 5178.
[21] Quintavalla, A.; Bandini, M. ChemCatChem 2016, 8, 1437.
[22] Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796.
[23] Muzart, J. Tetrahedron 2005, 61, 4179.
[24] Bandini, M. Angew. Chem., Int. Ed. 2011, 50, 994.
[25] Sundararaju, B.; Achard, M.; Bruneau, C. Chem. Soc. Rev. 2012, 41, 4467.
[26] Bandini, M.; Cera, G.; Chiarucci, M. Synthesis 2012, 44, 504.
[27] Butta, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
[28] Qian, J.; Jiang, G. Curr. Catal. 2017, 6, 25.
[29] Tang, H.; Huo, X.; Meng, Q.; Zhang, W. Acta Chim. Sinica 2016, 74, 219(in Chinese). (汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
[30] Wang, P.-S.; Shen, M.-L.; Gong, L.-Z. Synthesis 2018, 50, 956.
[31] Li, G.; Huo, X.; Jiang, X.; Zhang, W. Chem. Soc. Rev. 2020, 49, 2060.
[32] Gao, S.; Liu, H.; Wu, Z.; Yao, H.; Lin, A. Green Chem. 2017, 19, 1861.
[33] Zheng, J.; Breit, B. Org. Lett. 2018, 20, 1866.
[34] Lu, C.; Yu, X.; Chen, D.; Wang, H.; Song, Q.; Gao, J. Org. Biomol. Chem. 2019, 17, 3545.
[35] Ren, W.; Zuo, Q.-M.; Niu, Y.-N.; Yang, S.-D. Org. Lett. 2019, 21, 2596.
[36] Lu, C.-J.; Yu, X.; Chen, Y.-T.; Song, Q.-B.; Yang, Z.-P.; Wang, H. Eur. J. Org. Chem. 2020, 2020, 680.
[37] Chen, L.; Yin, X.-P.; Wang, C.-H.; Zhou, J. Org. Biomol. Chem. 2014, 12, 6033.
[38] Patil, N. T.; Yamamoto, Y. Tetrahedron Lett. 2004, 45, 3101.
[39] Ma, X.-T.; Dai, R.-H.; Zhang, J.; Gu, Y.; Tian, S.-K. Adv. Synth. Catal. 2014, 356, 2984.
[40] Zhou, H.; Yang, H.; Liu, M.; Xia, C.; Jiang, G. Org. Lett. 2014, 16, 5350.
[41] Yang, H.; Zhou, H.; Yin, H.; Xia, C.; Jiang, G. Synlett 2014, 25, 2149
[42] Pan, S.; Wu, B.; Hu, J.; Xu, R.; Jiang, M.; Zeng, X.; Zhong, G. J. Org. Chem. 2019, 84, 10111.
[43] Yan, P.; Pan, S.; Hu, J.; Lu, L.; Zeng, X.; Zhong, G. Adv. Synth. Catal. 2019, 361, 1322.
[44] Sakamoto, M.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1996, 69, 1065.
[45] Lang, S. B.; Locascio, T. M.; Tunge, J. A. Org. Lett. 2014, 16, 4038.
[46] van Gemmeren, M.; Bçrjesson, M.; Tortajada, A.; Sun, S.-Z.; Okura, K.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 6558.
[47] Pupo, G.; Properzi, R.; List, B. Angew. Chem., Int. Ed. 2016, 55, 6099.
[48] Fu, M.-C.; Shang, R.; Cheng, W.-M.; Fu, Y. Chem.-Eur. J. 2017, 23, 8818.
[49] Wu, F.-P.; Peng, J.-B.; Fu, L.-Y.; Qi, X.; Wu, X.-F. Org. Lett. 2017, 19, 5474.
[50] Li, M.-B.; Li, H.; Wang, J. Liu, C.-R.; Tian, S.-K. Chem. Commun. 2013, 49, 8190.
[51] Yan, L.; Xu, J.-K.; Huang, C.-F.; He, Z.-Y.; Xu, Y.-N.; Tian, S.-K. Chem.-Eur. J. 2016, 22, 13041.
[52] Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968.
[53] Ozawa, F.; Ishiyama, T.; Yamamoto, S.; Kawagishi, S.; Murakami, H. Organometallics 2004, 23, 1698.
[54] Piechaczyk, O.; Thoumazet, C.; Jean, Y.; le Floch, P. J. Am. Chem. Soc. 2006, 128, 14306.
[55] Kayaki, Y.; Koda, T.; Ikariya, T. J. Org. Chem. 2004, 69, 2595.
[56] Sawadjoon, S.; Samec, J. S. M. Org. Biomol. Chem. 2011, 9, 2548.
[57] Sawadjoon, S.; Sjçberg, P. J. R.; Orthaber, A.; Matsson, O.; Samec, J. S. M. Chem.-Eur. J. 2014, 20, 1520.
[58] Rukkijakan, T.; Akkarasamiyo, S.; Sawadjoon, S.; Samec, J. S. M. J. Org. Chem. 2018, 83, 4099.
[59] Akkarasamiyo, S.; Sawadjoon, S.; Orthaber, A.; Samec, J. S. M. Chem.-Eur. J. 2018, 24, 3488.
[60] Usui, I.; Schmidt, S.; Keller, M.; Breit, B. Org. Lett. 2008, 10, 1207.
[61] Gumrukcu, Y.; de Bruin, B.; Reek, J. N. H. ChemSusChem 2014, 7, 890.
[62] Gumrukcu, Y.; de Bruin, B.; Reek, J. N. H. Catalysts 2015, 5, 349.
[63] Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793.
[64] Huang, W.; Wang, J.; Shen, Q.; Zhou, X. Tetrahedron Lett. 2007, 48, 3969.
[65] Hirata, G.; Satomura, H.; Kumagae, H.; Shimizu, A.; Onodera, G.; Kimura, M. Org. Lett. 2017, 19, 6148.
[66] Shimizu, A.; Hirata, G.; Onodera, G.; Kimura, M. Adv. Synth. Catal. 2018, 360, 1954.
[67] Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 4085.
[68] Hikawa, H.; Yokoyama, Y. Org. Biomol. Chem. 2011, 9, 4044.
[69] Shue, Y.-J.; Yang, S.-C. Tetrahedron Lett. 2012, 53, 1380.
[70] Dhage, Y. D.; Shirai, T.; Arima, M.; Nakazima, A.; Hikawa, H.; Azumaya, I.; Kusakabe, T.; Takahashi, K.; Kato, K. RSC Adv. 2015, 5, 42623.
[71] Ma, X.; Yu, J.; Han, C.; Zhou, Q.; Ren, M.; Li, L.; Tang, L. Adv. Synth. Catal. 2019, 361, 1023.
[72] Johnson, C. S. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, 203.
[73] Cohen, Y.; Avram, L.; Frish, L. Angew Chem., Int. Ed. 2005, 44, 520.
[74] Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776.
[75] Jing, J.; Huo, X.; Shen, J.; Fu, J.; Meng, Q.; Zhang, W. Chem. Commun. 2017, 53, 5151.
[76] Hikawa, H.; Yokoyama, Y. J. Org. Chem. 2011, 76, 8433.
[77] Xie, J.; Xue, S.; Escudero-Adán, E. C.; Kleij, A. W. Angew. Chem., Int. Ed. 2018, 57, 16727.
[78] Xie, J.; Xiao, C.; Belmonte, M. M.; Escudero-Adán, E. C.; Kleij, A. W. ChemSusChem 2019, 12, 3152.
[79] Haruki, H.; Yasuda, S.; Nagao, K.; Ohmiya, H. Chem.-Eur. J. 2019, 25, 724.
[80] Zhou, H.; Yang, H.; Yin, H.; Liu, M.; Xia, C.; Jiang, G. RSC Adv. 2014, 4, 25596.
[81] Xie, P.; Wang, J.; Fan, J.; Liu, Y.; Wo, X.; Loh, T.-P. Green Chem. 2017, 19, 2135.
[82] Xie, P.; Wang, J.; Liu, Y.; Fan, J.; Wo, X.; Fu, W.; Sun, Z.; Loh, T.-P. Nat. Commun. 2018, 9, 1321.
[83] Ma, X.; Yu, J.; Zhou, Q.; Yan, R.; Zheng, L.; Wang, L. J. Org. Chem. 2019, 84, 7468.
[84] Ma, X.; Yu, J.; Ma, R.; Yan, R.; Zhang, Z. Chin. J. Org. Chem. 2019, 39, 830(in Chinese). (马献涛, 于静, 马瑞甜, 燕然, 张振雷, 有机化学, 2019, 39, 830.)
[85] Blanda, M. T.; Horner, J. H.; Newcomb, M. J. Org. Chem. 1989, 54, 4626.
[86] Cauble, D. F.; Lynch, V.; Krische, M. J. J. Org. Chem. 2003, 68, 15.
[87] Du, L.; Cao, P.; Xing, J.; Lou, Y.; Jiang, L.; Li, L.; Liao, J. Angew. Chem., Int. Ed. 2013, 52, 4207.
[88] Ulatowski, F.; Dąbrowa, K.; Bałakier, T.; Jurczak, J. J. Org. Chem. 2016, 81, 1746.
[89] Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305.
[90] Feng, B.; Li, Y.; Li, H.; Zhang, X.; Xie, H.; Cao, H.; Yu, L.; Xu, Q. J. Org. Chem. 2018, 83, 6769.
[91] Tsuchida, N.; Yamabe, S. J. Phys. Chem. A 2005, 109, 1974.
[92] Lu, C.-J.; Chen, D.-K.; Chen, H.; Wang, H.; Jin, H.; Huang, X.; Gao, J. Org. Biomol. Chem. 2017, 15, 5756.
[93] Kumar, D.; Vemula, S. R.; Cook, G. R. Green Chem. 2015, 17, 4300.
[94] Zhou, Q.; Zheng, L.; Ma, B.; Huang, L.; Liu, A.; Cao, X.; Yu, J.; Ma, X. J. Org. Chem. 2020, 85, 5097.
[95] Motokura, K.; Ikeda, M.; Kim, M.; Nakajima, K.; Kawashima, S.; Nambo, M.; Chun, W.-J.; Tanaka, S. ChemCatChem 2018, 10, 4536.
[96] Motokura, K.; Kawashima, S.; Nambo, M.; Manaka, Y.; Chun, W.-J. ChemCatChem 2020, 12, 2783.
文章导航

/