研究论文

基于化学和对映选择性转移氢化的β,γ-炔基α-氨基酸酯的催化不对称合成研究

  • 张璐 ,
  • 刘爱芹 ,
  • 刘华铮 ,
  • 万仁忠 ,
  • 孙书涛 ,
  • 刘磊
展开
  • a 山东农业大学动物科技学院 山东泰安 271018;
    b 山东大学化学与化工学院 济南 250100;
    c 山东第一医科大学(山东省医学科学院)药物研究所 济南 250062

收稿日期: 2020-05-15

  修回日期: 2020-06-03

  网络出版日期: 2020-06-13

基金资助

国家自然科学基金(Nos.21722204,21971148)资助项目.

Catalytic Asymmetric Synthesis of β,γ-Alkynyl α-Amino Esters via Chemo- and Enantio-selective Transfer Hydrogenation

  • Zhang Lu ,
  • Liu Aiqin ,
  • Liu Huazheng ,
  • Wan Renzhong ,
  • Sun Shutao ,
  • Liu Lei
Expand
  • a College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong 271018;
    b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100;
    c Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062

Received date: 2020-05-15

  Revised date: 2020-06-03

  Online published: 2020-06-13

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21722204, 21971148).

摘要

报道了一个通过β,γ-炔基α-亚胺酸酯的化学和对映选择性转移氢化反应来合成光学纯β,γ-炔基α-氨基酸酯的方法.该不对称还原反应所展示出的优秀的化学选择性是由手性磷酸作为催化剂以及苯并噻唑啉作为氢负供体实现的.反应展示出了良好的官能团兼容性,高对映选择性地合成了一系列光学活性的非天然氨基酸酯化合物.

本文引用格式

张璐 , 刘爱芹 , 刘华铮 , 万仁忠 , 孙书涛 , 刘磊 . 基于化学和对映选择性转移氢化的β,γ-炔基α-氨基酸酯的催化不对称合成研究[J]. 有机化学, 2020 , 40(9) : 2904 -2911 . DOI: 10.6023/cjoc202005037

Abstract

An effective chemo- and enantioselective transfer hydrogenation of β,γ-alkynyl α-imino esters to prepare optically pure β,γ-alkynyl α-amino esters has been described. The excellent chemoselectivity was achieved by using chiral phosphoric acid catalyzed asymmetric reduction with benzothiazoline as hydride donor. The reaction exhibited good functional group tolerance, providing a range of optically active non-natural amino esters with excellent enantioselectivity.

参考文献

[1] (a) Afagh, N. A.; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262.
(b) Mahatthananchai, J.; Dumas, A.; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 10954.
(c) Szostak, M.; Spain, M.; Procter, D. J. Chem. Soc. Rev. 2013, 42, 9155.
[2] (a) Hoffmann, R. W. Synthesis 2006, 3531.
(b) Young, I. S.; Baran, P. S. Nat. Chem. 2009, 1, 193.
[3] Trost, B. M. Science 1991, 254, 1471.
[4] Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
[5] (a) Barrett, G. C. Chemistry and Biochemistry of the Amino Acids, Chapman & Hall, London, 1985.
(b) Williams, R. M. Synthesis of Optically Active α-Amino Acids, Pergamon, Oxford, 1989.
(c) Duthaler, R. O. Tetrahedron 1994, 50, 1539.
(d) Hegedus, L. S. Acc. Chem. Res. 1995, 28, 299.
(e) Chin, J. W.; Cropp, T. A.; Anderson, J. C.; Mukherji, M.; Zhang, Z.; Schultz, P. G. Science 2002, 301, 964.
(f) Wang, L.; Schultz, P. G. Angew. Chem., Int. Ed. 2004, 44, 34.
(g) Cropp, T. A.; Schultz, P. G. Trends Genet. 2004, 20, 625.
[6] (a) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.
(b) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
(c) Lygo, B.; Angrews, B. I. Acc. Chem. Res. 2004, 37, 518.
(d) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
[7] (a) Abdulganeeva, S. A.; Erzhanov, K. B. Russ. Chem. Rev. 1991, 60, 676.
(b) Williams, R. M.; Aldous, D. J.; Aldous, S. C. J. Org. Chem. 1990, 55, 4657.
(c) Castelhano, A. L.; Horne, S.; Taylor, G. J.; Billedeau, R.; Krantz, A. Tetrahedron 1988, 44, 5451.
[8] (a) Ji, J.-X.; Wu, J.; Chan, A. S. C. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11196.
(b) Rueping, M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903.
[9] (a) Kang, Q.; Zhao, Z.-A.; You, S.-L. Org. Lett. 2008, 10, 2031.
(b) Chen, M.-W.; Wu, B.; Chen, Z.-P.; Shi, L.; Zhou, Y.-G. Org. Lett. 2016, 18, 4650.
[10] (a) Ge, X.; Chen, X.; Qian, C. Chin. J. Org. Chem. 2016, 36, 1208(in Chinese). (葛新, 陈新志, 钱超, 有机化学, 2016, 36, 1208.)
(b) Hu, S.-B.; Chen, M.-W.; Zhai, X.-Y.; Zhou, Y.-G. Acta Chim. Sinica 2018, 76, 103(in Chinese). (胡书博, 陈木旺, 翟小勇, 周永贵, 化学学报, 2018, 76, 103.)
(c) Liu, Y.; Dong, X.-Q.; Zhang, X. Chin. J. Org. Chem. 2020, 40, 1096(in Chinese). (刘元华, 董秀琴, 张绪穆, 有机化学, 2020, 40, 1096.)
(d) Dou, X.; Liu, D.; Zhang, W. Chin. J. Pharm. 2020, 51, 551(in Chinese). (窦骁勇, 刘德龙, 张万斌, 中国医药工业杂志, 2020, 51, 551.)
[11] Zhang, L.; Zhu, R.; Feng, A.; Zhao, C.; Chen, L.; Feng, G.; Liu, L. Chem. Sci. 2020, 11, 4444.
[12] (a) Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T. Acc. Chem. Res. 2015, 48, 388.
(b) Zhu, C.; Falck, J. R. ChemCatChem 2011, 3, 1850.
(c) Zhu, C.; Akiyama, T. Org. Lett. 2009, 11, 4180.
(d) Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem., Int. Ed. 2011, 50, 8180.
(e) Horiguchi, K.; Yamamoto, E.; Saito, K.; Yamanaka, M.; Akiyama, T. Chem.-Eur. J. 2016, 22, 8078.
(f) Kim, K.-H.; Akiyama, T.; Cheon, C.-H. Chem.-Asian J. 2016, 11, 274.
(g) Wen, W.; Zeng, Y.; Peng, L.-Y.; Fu, L.-N.; Guo, Q.-X. Org. Lett. 2015, 17, 3922.
[13] Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed. 2011, 50, 8180.
[14] Chen, X. M.; Li, X. S.; Chan, A. S. C. Chin. Chem. Lett. 2009, 20, 407.
[15] Ji, J.-X.; Au-Yeung, T. T.-L.; Wu, J.; Yip, C. W.; Chan, A. S. C. Adv. Synth. Catal. 2004, 346, 42.
文章导航

/