研究论文

可见光催化炔硫醚的远程卤-二氟烷基化反应

  • 朱海倩 ,
  • 商甜波 ,
  • 卢增辉 ,
  • 罗芳 ,
  • 朱钢国
展开
  • a 浙江师范大学化学系 先进催化材料教育部重点实验室 浙江金华 321004;
    b 万州区生态环境监测站 重庆 404000

收稿日期: 2020-05-24

  修回日期: 2020-06-06

  网络出版日期: 2020-06-13

基金资助

国家自然科学基金(No.21672191)、浙江省自然科学基金(No.LZ20B020002)和浙江省教育厅(No.Y201942955)资助项目.

Visible-Light Photocatalytic Remote Halo-difluoroalkylation of Thioalkynes

  • Zhu Haiqian ,
  • Shang Tianbo ,
  • Lu Zenghui ,
  • Luo Fang ,
  • Zhu Gangguo
Expand
  • a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004;
    b Wanzhou Ecological Environment Monitoring Station, Chongqing 404000

Received date: 2020-05-24

  Revised date: 2020-06-06

  Online published: 2020-06-13

Supported by

Project supported by the National Natural Science Foundation of China (No. 21672191), the Natural Science Foundation of Zhejiang Province (No. LZ20B020002) and the Education Department of Zhejiang Province (No. Y201942955).

摘要

氟烷基取代的烯烃在生命科学及材料科学中具有重要价值.炔烃的氟烷基化反应为氟烷基取代烯烃的合成提供了有效方法,但是,目前大都属于1,2-双官能团化反应,而炔烃的远程氟烷基化双官能团化反应依然有待发展.以廉价易得的卤代二氟烷基试剂为自由基前体,发展了一种可见光催化的炔硫醚远程卤-二氟烷基化反应,一步构建了远端卤代的(Z)-氟烷基取代烯烃,其区域、立体和位点选择性优秀.该反应条件温和,官能团兼容性良好,同时构建了3根新的化学键,为传统方法较难合成的、热力学相对不稳定的(Z)-氟烷基取代烯烃提供了简单、高效的合成方法,也为惰性碳-氢键的直接卤代提供了新选择.初步的机理研究表明,反应经历了杂原子诱导的β-氟烷基化、1,5-氢原子迁移、单电子氧化和卤离子进攻的串联过程.

本文引用格式

朱海倩 , 商甜波 , 卢增辉 , 罗芳 , 朱钢国 . 可见光催化炔硫醚的远程卤-二氟烷基化反应[J]. 有机化学, 2020 , 40(10) : 3410 -3419 . DOI: 10.6023/cjoc202005066

Abstract

Fluoroalkylated alkenes are of significant importance in life sciences and functional materials. The fluoroalkylation of alkynes offers an efficient method for the synthesis of functionalized fluoroalkylated alkenes. However, the current methods are often limited to 1,2-difunctionalization, while the remote fluoroalkylative difunctionalization of alkynes has been rarely developed. Herein, a novel visible-light-induced remote halo-difluoroalkylation of thioalkynes is realized with difluoroalkyl halides as the radical source, forming distally halogenated (Z)-fluoroalkylated alkenes in moderate to high yields with excellent regio-, stereo-, and site-selectivity. The notable features of this reaction include the mild reaction conditions, broad substrate scope, concurrent formation of three new chemical bonds, and a thermodynamically less stable (Z)-alkene, thus enabling it a highly attractive method for organic synthesis. It represents a new advance on the direct C-H bond halogenation. Preliminary mechanistic studies indicate a cascade radical process involving the heteroatom-induced β-fluoroalkylation of C-C triple bonds, intramolecular 1,5-hydrogen atom transfer (1,5-HAT), single electron transfer (SET) oxidation and halide addition.

参考文献

[1] For selected reviews, see:(a) Purser, S.; Moore, P. R. Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[2] (a) Burke, T. R.; Lee, K. Acc. Chem. Res. 2003, 36, 426.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(c) An, L.; Tong, F.; Zhang, X. Acta Chim. Sinica 2018, 76, 977(in Chinese). (安伦, 童非非, 张新刚, 化学学报, 2018, 76, 977.)
(d) Tao, X.; Sheng, R.; Bao, K.; Wang, Y.; Jin, Y. Chin. J. Org. Chem. 2019, 39, 2726(in Chinese). (陶雪芬, 盛荣, 鲍堃, 王玉新, 金银秀, 有机化学, 2019, 39, 2726.)
(e) Dai, J.; Lei, W.; Liu, Q. Acta Chim. Sinica 2019, 77, 911(in Chinese). (戴建玲, 雷文龙, 刘强, 化学学报, 2019, 77, 911.)
[3] (a) Long, Z.-Y.; Chen, Q.-Y. J. Org. Chem. 1999, 64, 4775.
(b) Huang, X.-T.; Chen, Q.-Y. J. Org. Chem. 2001, 66, 4651.
(c) Ke, M.; Feng, Q.; Yang, K.; Song, Q. Org. Chem. Front. 2016, 3, 150.
(d) Feng, X.; Wang, X.; Chen, H.; Tang, X.; Guo, M.; Zhao, W.; Wang, G. Org. Biomol. Chem. 2018, 16, 2841.
(e) Li, K.-K.; Zhang, X.-X.; Chen, J.-C.; Gang, Y.; Yang, C.-H.; Zhang, K.-Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Lett. 2019, 21, 9914.
[4] (a) He, Y.-T.; Wang, Q.; Li, L.-H.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2015, 17, 5188.
(b) He, Y.-T.; Li, L.-H.; Wang, Q.; Wu, W.; Liang, Y.-M. Org. Lett. 2016, 18, 5158.
(c) Wang, Q.; Zheng, L.; He, Y.-T.; Liang, Y.-M. Chem. Commun. 2017, 53, 2814.
(d) Zhang, Y.; Zhang, J.; Hu, B.; Ji, M.; Ye, S.; Zhu, G. Org. Lett. 2018, 20, 2988.
(e) Liang, J.-Q.; Huang, G.-Z; Peng, P.; Zhang, T.-Y.; Wu, J.-J.; Wu, F.-H. Adv. Synth. Catal. 2018, 360, 2221.
[5] Zhang, B.-S.; Gao, L.-Y.; Zhang, Z.; Wen, Y.-H.; Liang, Y.-M. Chem. Commun. 2018, 54, 1185.
[6] Xiang, Y.; Li, Y.; Kuang, Y.; Wu, J. Chem.-Eur. J. 2017, 23, 1032.
[7] (a) Wang, S.; Zhang, J.; Kong, L.; Tan, Z.; Bai, Y.; Zhu, G. Org. Lett. 2018, 20, 5631.
(b) Guo, W.-H.; Zhao, H.-Y.; Luo, Z.-J.; Zhang, S.; Zhang, X. ACS Catal. 2019, 9, 38.
[8] Li, Y.; Li, H.; Hu, J. Tetrahedron 2009, 65, 478.
[9] Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem., Int. Ed. 2014, 53, 4910.
[10] Zhong, J.-J.; Yang, C.; Chang, X.-Y.; Zou, C.; Lu, W.; Che, C.-M. Chem. Commun. 2017, 53, 8948.
[11] Li, G.; Cao, Y.-X.; Luo, C.-G.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Org. Lett. 2016, 18, 4806.
[12] Wu, G.; von Wangelin, A. J. V. Chem. Sci. 2018, 9, 1795.
[13] Shang, T.; Zhang, J.; Zhang, Y.; Zhang, F.; Li, X.-S.; Zhu, G. Org. Lett. 2020, 22, 3667.
[14] Xiong, Z.; Zhang, F.; Yu, Y.; Tan, Z.; Zhu, G. Org. Lett. 2020, 22, 4088.
[15] For selected reviews on photocatalysis, see:(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(d) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.
[16] For selected reports on remote C-H halogention, see:(a) Kundu, R.; Ball, Z. T. Org. Lett. 2010, 12, 2460.
(b) Liu, T.; Myers, M. C.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 306.
(c) Herron, A. N.; Liu, D.; Xia, G.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766.
(d) Short, M. A.; Blackburn, J. M.; Roizen, J. L. Angew. Chem., Int. Ed. 2018, 57, 296.
[17] (a) Yang, Z.; Chen, X.; Kong, W.; Xia, S.; Zheng, R.; Luo, F.; Zhu, G. Org. Biomol. Chem. 2013, 11, 2175.
(b) Zhu, G.; Kong, W.; Feng, H.; Qian, Z. J. Org. Chem. 2014, 79, 1786.
[18] Nie, X.; Cheng, C.; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898.
[19] (a) Jin, W.; Wu, M.; Xiong, Z.; Zhu, G. Chem. Commun. 2018, 54, 7924.
(b) Wan, Y.; Shang, T.; Lu, Z.; Zhu, G. Org. Lett. 2019, 21, 4187.
[20] For selected reports on HAT of vinyl radicals, see:(a) Curran, D. P.; Shen, W. J. Am. Chem. Soc. 1993, 115, 6051.
(b) Bogen, S.; Malacria, M. J. Am. Chem. Soc. 1996, 118, 3992.
(c) Hu, M.; Fan, J.-H.; Liu, Y.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Angew. Chem., Int. Ed. 2015, 54, 9577.
(d) Qiu, J.-K.; Jiang, B.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Sun, J.; Wei, P.; Tu, S.-J.; Li, G. J. Am. Chem. Soc. 2015, 137, 8928.
(e) Huang, L.; Ye, L.; Li, X.-H.; Li, Z.-L.; Lin, J.-S.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
(f) Gloor, C. S.; Dénès, F.; Renaud, P. Angew. Chem., Int. Ed. 2017, 56, 13329.
(g) An, X.-D.; Jiao, Y.-Y.; Zhang, H.; Gao, Y.; Yu, S. Org. Lett. 2018, 20, 401.
(h) Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2018, 57, 2712.
(i) Wu, S.; Wu, X.; Wang, D.; Zhu, C. Angew. Chem., Int. Ed. 2019, 58, 1499.
(j) Yang, S.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2019, 21, 4837.
(k) Liu, T.; Qu, C.; Xie, J.; Zhu, C. Chin. J. Org. Chem. 2019, 39, 1613(in Chinese). (刘涛, 屈川华, 谢劲, 朱成建, 有机化学, 2019, 39, 1613.)
(l) Li, H.; Guo, L.; Feng, X.; Huo, L.; Zhu, S.; Chu, L. Chem. Sci. 2020, 11, 4904.
(m) Wu, S.; Wu, X.; Wu, Z.; Zhu, C. Sci. China: Chem. 2019, 62, 1507.
文章导航

/