综述与进展

抗结核分枝杆菌生物碱Pseudopteroxazole和Ileabethoxazole的全合成研究进展

  • 孙泽众 ,
  • 徐苗 ,
  • 王云侠 ,
  • 胡向东
展开
  • 西北大学化学与材料科学学院 合成与天然功能分子教育部重点实验室 西安 710127

收稿日期: 2020-05-14

  修回日期: 2020-06-11

  网络出版日期: 2020-06-28

基金资助

国家自然科学基金(No.21772153)、陕西省科技厅基金(No.S2019-JC-YB-0846)和陕西省重点科技创新团队基金(No.2017KCT-37)资助项目.

Synthetic Progress of Alkaloids against Mycobacterium Tuberculosis: Pseudopteroxazole and Ileabethoxazole

  • Sun Zezhong ,
  • Xu Miao ,
  • Wang Yunxia ,
  • Hu Xiangdong
Expand
  • Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127

Received date: 2020-05-14

  Revised date: 2020-06-11

  Online published: 2020-06-28

Supported by

Project supported by the National Natural Science Foundation of China (No. 21772153), the Science and Technology Department of Shaanxi Province (No. S2019-JC-YB-0846) and the Key Science and Technology Innovation Team of Shaanxi Province (No. 2017KCT-37).

摘要

从海鞭Pseudopterogorgia elisabethae中分离得到的生物碱pseudopteroxazole和ileabethoxazole对结核病病原体——结核分枝杆菌具有良好的抗菌活性.这两种生物碱具有相似的四环骨架,包含四个立体中心、一个全取代苯环和天然产物中少有的苯并噁唑单元.良好的抗结核分枝杆菌活性和独特的分子结构使得对pseudopteroxazole和ileabethoxazole的合成研究得到了广泛关注,综述了国内外对这两生物碱的全合成研究进展.

本文引用格式

孙泽众 , 徐苗 , 王云侠 , 胡向东 . 抗结核分枝杆菌生物碱Pseudopteroxazole和Ileabethoxazole的全合成研究进展[J]. 有机化学, 2020 , 40(12) : 4203 -4215 . DOI: 10.6023/cjoc202005034

Abstract

Two alkaloids of pseudopteroxazole and ileabethoxazole, isolated from sea whip Pseudopterogorgia elisabethae, have significant antimicrobial activity against pathogen of tuberculosis:Mycobacterium tuberculosis. These two alkaloids possess similar tetracyclic skeleton, which containing four stereocenters, a fully substituted aromatic ring and an uncommon benzoxazole unit in natural products. Significant antimicrobial activity and special molecular structures attracted extensive attentions to synthetic study on pseudopteroxazole and ileabethoxazole. The progress in the total synthesis of these two alkaloids is reviewed.

参考文献

[1] (a) Paulson, T. Nature 2013, 502, S2.
(b) Gong, H.; Li, J.; Xu, A.; Tang, Y.; Ji, W.; Gao, R.; Wang, S.; Yu, L.; Tian, C.; Li, J.; Yen, H.-Y.; Lam, S. M.; Shui, G.; Yang, X.; Sun, Y.; Li, X.; Jia, M.; Yang, C.; Jiang, B.; Lou, Z.; Robinson, C. V.; Wong, L.-L.; Guddat, L. W.; Sun, F.; Wang, Q.; Rao, Z. Science 2018, 362, eaat8923.
[2] (a) Gerard, J.; Lloyd, R.; Barsby, T.; Haden, P.; Kelly, M. T.; Andersen, R. J. J. Nat. Prod. 1997, 60, 223.
(b) El Sayed, K. A.; Bartyzel, P.; Shen, X.-Y.; Perry, T. L.; Zjawiony, J. K.; Hamann, M. T. Tetrahedron 2000, 56, 949.
(c) Rodríguez, I. I.; Rodríguez, A. D. J. Nat. Prod. 2003, 66, 855.
(d) De Oliveira, J. H.; Grube, A.; Köck, M.; Berlinck, R. G.; Macedo, M. L.; Ferreira, A. G.; Hajdu, E. J. Nat. Prod. 2004, 67, 1685.
(e) Ma, C.-Y.; Case, R. J.; Wang, Y.-H.; Zhang, H.-J.; Tan, G. T.; Hung, N. V.; Cuong, N. M.; Franzblau, S. G.; Soejarto, D. D.; Fong, H. H. S.; Pauli, G. F. Planta Med. 2005, 71, 261.
(f) Winkler, J. D.; Londregan, A. T.; Hamann, M. T. Org. Lett. 2006, 8, 2591.

(g) Steinmetz, H.; Irschik, H.; Kunze, B.; Reichenbach, H.; Hoefle, G.; Jansen, R. Chem.-Eur. J. 2007, 13, 5822.
(h) Thongthoom, T.; Songsiang, U.; Phaosiri, C.; Yenjai, C. Arch. Pharm. Res. 2010, 33, 675.
(i) Auranwiwat, C.; Laphookhieo, S.; Trisuwan, K.; Pyne, S. G.; Ritthiwigrom, T. Phytochem. Lett. 2014, 9, 113.
[3] Rodríguez, A. D.; Ramirez, C.; Rodríguez, I. I.; Gonzalez, E. Org. Lett. 1999, 1, 527.
[4] Rodríguez, I. I.; Rodríguez, A. D.; Wang, Y.; Franzblau, S. G. Tetrahedron Lett. 2006, 47, 3229.
[5] Johnson, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 4475.
[6] Fernando, C. R.; Calder, I. C.; Ham, K. N. J. Med. Chem. 1980, 23, 1153.
[7] (a) Vedejs, E.; Fang, H. W. J. Org. Chem. 1984, 49, 210.
(b) Cristau, H.-J.; Ribeill, Y. Synthesis 1988, 911.
[8] (a) Corey, E. J.; Lazerwith, S. E. J. Am. Chem. Soc. 1998, 120, 12777.
(b) Lazerwith, S. E.; Johnson, T. W.; Corey, E. J. Org. Lett. 2000, 2, 2389.
(c) Hu, Y.-L.; Wang, Z.; Yang, H.; Chen, J.; Wu, Z.-B.; Lei, Y.; Zhou, L. Chem. Sci. 2019, 10, 6777.
[9] Wiedenau, P.; Monse, B.; Blechert, S. Tetrahedron 1995, 51, 1167.
[10] Evans, D.; Smith, C. E.; Williamson, W. R. N. J. Med. Chem. 1977, 20, 169.
[11] (a) Nakahara, Y.; Fujita, A.; Beppu, K.; Ogawa, T. Tetrahedron 1986, 42, 6465.
(b) Katritzky, A. R.; Musgrave, R. P.; Rachwal, B.; Zaklika, C. Heterocycles 1995, 41, 345.
[12] Davidson, J. P.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 13486.
[13] Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem. Commun. 1987, 1625.
[14] Vedejs, E.; Fang, H. W. J. Org. Chem. 1984, 49, 210.
[15] Corey, E. J.; Sauers, C. K. J. Am. Chem. Soc. 1957, 79, 248.
[16] (a) Harmata, M.; Hong, X.; Barnes, C. L. Org. Lett. 2004, 6, 2201.
(b) Harmata, M.; Hong, X. Org. Lett. 2005, 7, 3581.
[17] (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
(b) Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2419.
[18] Harmata, M.; Kahraman, M. Synthesis 1994, 142.
[19] Cary, J. M.; Moore, J. S. Org. Lett. 2002, 4, 4663.
[20] Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. 1991, 32, 2465.
[21] Shi, L.; Narula, C. K.; Mak, K. T.; Kao, L.; Xu, Y.; Heck, R. F. J. Org. Chem. 1983, 48, 3894.
[22] Cesati, R. R.; De Armas, J.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 96.
[23] (a) Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 2023.
(b) Smidt, S. P.; Menges, F.; Pfaltz, A. Org. Lett. 2004, 6, 3653.
[24] Smith, A. B.; Schow, S. R.; Bloom, J. D.; Thompson, A. S.; Winzenberg, K. N. J. Am. Chem. Soc. 1982, 104, 4015.
[25] Williams, D. R.; Shah, A. A. J. Am. Chem. Soc. 2014, 136, 8829.
[26] (a) Williams, D. R.; Fu, L. Synlett 2010, 591.

(b) Williams, D. R.; Fu, L. Synlett 2010, 1641.
(c) Counceller, C. M.; Eichman, C. C.; Proust, N.; Stambuli, J. P. Adv. Synth. Catal. 2011, 353, 79.
(d) Williams, D. R.; Shah, A. A. Chem. Commun. 2010, 46, 4297.
[27] Ohira, S. Synth. Commun. 1989, 19, 561.
[28] (a) Shibata, T.; Koga, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. 1995, 68, 911.
(b) Pearson, A. J.; Dubbert, R. A. Organometallics 1994, 13, 1656.
(c) Williams, D. R.; Shah, A. A.; Mazumder, S.; Baik, M.-H. Chem. Sci. 2013, 4, 238.
[29] DeSolms, S. J. J. Org. Chem. 1976, 41, 2650.
[30] Baker, B. A.; Boskovic, Z. V.; Lipshutz, B. H. Org. Lett. 2008, 10, 289.
[31] Anderson, A. M.; Blazek, J. M.; Garg, P.; Payne, B. J.; Mohan, R. S. Tetrahedron Lett. 2000, 41, 1527.
[32] Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
[33] Yang, M.; Yang, X.; Sun, H.; Li, A. Angew. Chem., Int. Ed. 2016, 55, 2851.
[34] (a) Burns, B.; Grigg, R.; Ratananukul, P.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron Lett. 1988, 29, 5565.
(b) Negishi, E.; Noda, Y.; Lamaty, F.; Vawter, E. J. Tetrahedron Lett. 1990, 31, 4393.
(c) Suffert, J.; Salem, B.; Klotz, P. J. Am. Chem. Soc. 2001, 123, 12107.
(d) Salem, B.; Klotz, P.; Suffert, J. Org. Lett. 2003, 5, 845.

(e) Salem, B.; Delort, E.; Klotz, P.; Suffert, J. Org. Lett. 2003, 5, 2307.
(f) Hulot, C.; Amiri, S.; Blond, G.; Schreiner, P. R.; Suffert, J. J. Am. Chem. Soc. 2009, 131, 13387.
(g) Kan, S. B. J.; Anderson, E. A. Org. Lett. 2008, 10, 2323.

(h) Cordonnier, M.-C. A.; Kan, S. B. J.; Anderson, E. A. Chem. Commun. 2008, 44, 5818.
(i) Cordonnier, M.-C. A.; Kan, S. B. J.; Gockel, B.; Goh, S. S.; Anderson, E. A. Org. Chem. Front. 2014, 1, 661.
[35] (a) Lu, Z.; Li, Y.; Deng, J.; Li, A. Nat. Chem. 2013, 5, 679.
(b) Li, J.; Yang, P.; Yao, M.; Deng, J.; Li, A. J. Am. Chem. Soc. 2014, 136, 16477.
(c) Bian, M.; Wang, Z.; Xiong, X.; Sun, Y.; Matera, C.; Nicolaou, K. C.; Li, A. J. Am. Chem. Soc. 2012, 134, 8078.
(d) Meng, Z.; Yu, H.; Li, L.; Tao, W.; Chen, H.; Wan, M.; Yang, P.; Edmonds, D. J.; Zhong, J.; Li, A. Nat. Commun. 2015, 6, 6096.

(e) Yang, M.; Li, J.; Li, A. Nat. Commun. 2015, 6, 6445.

(f) Wan, M.; Yao, M.; Gong, J.; Yang, P.; Liu, H.; Li, A. Chin. Chem. Lett. 2015, 26, 272.
(g) Lu, Z.; Li, H.; Bian, M.; Li, A. J. Am. Chem. Soc. 2015, 137, 13764.
[36] Yadav, J. S.; Bhasker, E. V.; Geetha, V.; Srihari, P. Tetrahedron 2010, 66, 1997.
[37] Buynak, J. D.; Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D.; Zhang, H. J. Org. Chem. 1991, 56, 7076.
[38] (a) Conrad, J. C.; Kong, J.; Laforteza, B. N.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 11640.
(b) Nicolaou, K. C.; Reingruber, R.; Sarlah, D.; Bräse, S. J. Am. Chem. Soc. 2009, 131, 2086.
[39] Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 18, 2182.
[40] Félix, G.; Dunoguès, J.; Pisciotti, F.; Galas, R. Angew. Chem., Int. Ed. Engl. 1977, 16, 488.
[41] Blakemore, P. R.; Cole, W. J.; Kocieński, P. J.; Morley, A. Synlett 1998, 26.
[42] Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4130.
[43] (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379.
(b) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Perkin Trans. 1 1977, 869.
(c) Gilbert, J. C.; Weerasooriya, U. J. Org. Chem. 1979, 44, 4997.
[44] Suárez, A.; Fu, G. C.; Angew. Chem., Int. Ed. 2004, 43, 3580.
[45] Yu, X.; Su, F.; Liu, C.; Yuan, H.; Zhao, S.; Zhou, Z.; Quan, T.; Luo, T. J. Am. Chem. Soc. 2016, 138, 6261.
[46] (a) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2009, 38, 1039.
(b) Alexakis, A.; Krause, N.; Woodward, S. In Copper-Catalyzed Asymmetric Synthesis, Eds.:Alexakis, A.; Krause, N.; Woodward, S., Wiley-VCH, Weinheim, 2014, Chapter 2, pp. 33~68.
[47] Alexakis, A.; Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem. Soc. 2002, 124, 5262.
[48] Morita, Y.; Suzuki, M.; Noyori, R. J. Org. Chem. 1989, 54, 1785.
[49] Jeffery, T. J. Chem. Soc., Chem. Commun. 1991, 324.
[50] McCulloch, M. W. B.; Berrue, F.; Haltli, B.; Kerr, R. G. J. Nat. Prod. 2011, 74, 2250.
[51] Zhang, X.; Fang, X.; Xu, M.; Lei, Y.; Wu, Z.; Hu, X. Angew. Chem., Int. Ed. 2019, 58, 7845.
[52] (a) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
(b) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
(c) Deng, J.; Zhou, S.; Zhang, W.; Li, J.; Li, R.; Li, A. J. Am. Chem. Soc. 2014, 136, 8185.
(d) Zhou, S.; Chen, H.; Luo, Y.; Zhang, W.; Li, A. Angew. Chem., Int. Ed. 2015, 54, 6878.
(e) Jiang, S.; Zeng, X.; Liang, X.; Lei, T.; Wei, K.; Yang, Y. Angew. Chem., Int. Ed. 2016, 55, 4044.
(f) Liang, X.; Zhang, T.-Y.; Zeng, X.-Y.; Zheng, Y.; Wei, K.; Yang, Y.-R. J. Am. Chem. Soc. 2017, 139, 3364.
(g) Zhou, S.; Guo, R.; Yang, P.; Li, A. J. Am. Chem. Soc. 2018, 140, 9025.
(h) Liang, X.; Zhang, T.; Meng, C.; Li, X.; Wei, K.; Yang, Y. Org. Lett. 2018, 20, 4575.
(i) Yao, J.-N.; Liang, X.; Wei, K.; Yang, Y.-R. Org. Lett. 2019, 21, 8485.
[53] Hou, S.-H.; Prichina, A. Y.; Zhang, M.; Dong, G. Angew. Chem., Int. Ed. 2020, 59, 7848.
[54] Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. J. Org. Chem. 2012, 77, 4765.
[55] Xia, Y.; Lu, G.; Liu, P.; Dong, G. Nature 2016, 539, 546.
[56] Zhang, S.; Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2015, 137, 531.
[57] (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778.
(b) Nave, S.; Sonawane, R. P.; Elford, T. G.; Aggarwal, V. K. J. Am. Chem. Soc. 2010, 132, 17096.
(c) Elford, T. G.; Nave, S.; Sonawane, R. P.; Aggarwal, V. K. J. Am. Chem. Soc. 2011, 133, 16798.
(d) Leonori, D.; Aggarwal, V. K. Acc. Chem. Res. 2014, 47, 3174.
[58] (a) Escarcena, R.; Perez-Meseguer, J.; del Olmo, E.; Alanis-Garza, B.; Garza-Gonzalez, E.; Salazar-Aranda, R.; De Torres, N. W. Molecules 2015, 20, 7245.
(b) Hori, T.; Sharpless, K. B. J. Org. Chem. 1978, 43, 1689.
(c) Wang, D.-Y.; Guo, S.-H.; Pan, G.-F.; Zhu, X.-Q.; Gao, Y.-R.; Wang, Y.-Q. Org. Lett. 2018, 20, 1794.
[59] (a) Zhang, Y.; C. Li, J. J. Am. Chem. Soc. 2006, 128, 4242.
(b) Liu, L.; Floreancig, P. E. Org. Lett. 2009, 11, 3152.

(c) Lingamurthy, M.; Jagadeesh, Y.; Ramakrishna, K.; Rao, B. V. J. Org. Chem. 2016, 81, 1367.
(d) Morales-Rivera, C. A.; Floreancig, P. E.; Liu, P. J. Am. Chem. Soc. 2017, 139, 17935.
文章导航

/