研究论文

胃蛋白酶非天然催化活性的新用途:高效合成四氢喹唑啉

  • 姜国芳 ,
  • 卢粤 ,
  • 李红霞 ,
  • 胡智宇 ,
  • 朱潇 ,
  • 谢宗波 ,
  • 乐长高
展开
  • 东华理工大学化学生物与材料科学学院 江西省合成化学重点实验室 江西南昌 330013

收稿日期: 2020-06-05

  修回日期: 2020-06-12

  网络出版日期: 2020-06-28

基金资助

国家自然科学基金(No.21462001)、江西省科技(No.20161BCB24006)资助项目.

New Use of Non-natural Catalytic Activity of Pepsin: Highly Efficient Synthesis of Tetrahydroquinazolines

  • Jiang Guofang ,
  • Lu Yue ,
  • Li Hongxia ,
  • Hu Zhiyu ,
  • Zhu Xiao ,
  • Xie Zongbo ,
  • Le Zhanggao
Expand
  • Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, Jiangxi 330013

Received date: 2020-06-05

  Revised date: 2020-06-12

  Online published: 2020-06-28

Supported by

Project supported by the National Natural Science Foundation of China (No. 21462001), and the Science and Technology Projects of Jiangxi Province (No. 20161BCB24006).

摘要

猪胃粘膜蛋白酶具有催化芳香胺和2-氨基苯甲醛环化缩合反应的能力,在甲醇水溶液中,以良好的收率(41%~95%)合成了一系列四氢喹唑啉类化合物.通过优化酶促反应的溶剂、温度、酶用量和底物比例来提高胃蛋白酶的催化活性.该方法可作为四氢喹唑啉衍生物化学合成的替代方法,也进一步拓展了胃蛋白酶非天然催化活性的应用范围.

本文引用格式

姜国芳 , 卢粤 , 李红霞 , 胡智宇 , 朱潇 , 谢宗波 , 乐长高 . 胃蛋白酶非天然催化活性的新用途:高效合成四氢喹唑啉[J]. 有机化学, 2020 , 40(9) : 2827 -2835 . DOI: 10.6023/cjoc202006006

Abstract

Pepsin from porcine gastric mucosa has a non-natural ability to catalyze the cyclocondensation of aromatic amines and 2-aminobenzaldehyde. The corresponding tetrahydroquinazolines were obtained in good yields (41%~95%) in aqueous methanol solution. The catalytic activity of pepsin was evaluated by investigating solvent, temperature, enzyme loading, and substrate ratio in the enzyme-catalyzed reaction. Herein, a potential biocatalytic approach as an alternative to chemical synthesis for tetrahydroquinazoline derivatives was proposed.

参考文献

[1] (a) Yamamoto, H.; Banerjee, A. Synfacts 2018, 14, 0845.
(b) Yamamoto, H.; Banerjee, A. Synfacts 2018, 14, 0944.
(c) J. Sinkkonen, J.; Zelenin, K. N.; Potapov, A. K. A.; Lagoda, I. V.; Alekseyev, V. V.; Pihlaja, K. Tetrahedron 2003, 59, 1939.
[2] (a) Kikuchi, H.; Horoiwa, S.; Kasahara, R.; Hariguchi, N.; Matsumoto, M.; Oshima, Y. Eur. J. Med. Chem. 2014, 76, 10.
(b) Koehler, R.; Goodman, L.; DeGraw, J.; Baker, B. R. J. Am. Chem. Soc. 1958, 80, 5779.
(c) Obafemi, C. A.; Fadare, O. A.; Jasinski, J. P.; Millikan, S. P.; Obuotor, E. M.; Iwalewa, E. O.; Ceylan, Ü. J. Mol. Struct. 2018, 1155, 610.
[3] (a) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419.
(b) He, Y. P.; Wu, H.; Chen, D. F.; Yu, J.; Gong, L. Z. Chem.-Eur. J. 2013, 19, 5232.
[4] Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524.
[5] Rostamizadeh, S.; Amani, A. M.; Aryan, R.; Ghaieni, H. R.; Shadjou, N. Synth. Commun. 2008, 38, 3567.
[6] Shi, D.; Dou, G.; Zhou, Y. Synthesis 2008, 2000.
[7] Hu, W.; Yang, W.; Yan, T.; Cai, M. Synth. Commun. 2019, 49, 799.
[8] Zhang, X.; Ye, D.; Sun, H.; Guo, D.; Wang, J.; Huang, H.; Liu, H. Green. Chem. 2009, 11, 1881.
[9] Liu, T.; Fu, H. Synthesis 2012, 44, 2805.
[10] El-Messery, S. M.; Hassan, G. S.; Nagi, M. N.; Habib, E. S. E.; Al-Rashood, S. T.; El-Subbagh, H. I. Bioorg. Med. Chem. Lett. 2016, 26, 4815.
[11] Richers, M. T.; Zhao, C.; Seidel, D. Beilstein J. Org. Chem. 2013, 9, 1194.
[12] Sriramoju, V.; Kurva, S.; Madabhushi, S. New J. Chem. 2018, 42, 3188.
[13] Siddique, M. U. M.; McCann, G. J.; Sonawane, V. R.; Horley, N.; Gatchie, L.; Joshi, P.; Chaudhuri, B. Eur. J. Med. Chem. 2017, 130, 320.
[14] Sarsah, S. R.; Lutz Jr, M. R.; Bobb, K. C.; Becker, D. P. Tetrahedron Lett. 2015, 56(40), 5390.
[15] (a) Kirk, O.; Borchert, T. V.; Fuglsang, C. C. Curr. Opin. Biotechnol. 2002, 13, 345.
(b) Bersaneti, G. T.; Pan, N. C.; Baldo, C.; Celligoi, M. A. P. C. Appl. Biochem. Biotechnol. 2018, 184, 838.
(c) Singh, R. M.; Kumar, A.; Mehta, P. K. 3 Biotech 2016, 6, 174.
[16] (a) McLennan, A. G. Cell. Mol. Life Sci. 2006, 63, 123.
(b) Weiss, A. K. H.; Loeffler, J. R.; Liedl, K. R.; Gstach, H.; Jansen, P. Biochem. Soc. Trans. 2018, 46, 295.
(c) Carreras-Puigvert, J.; Zitnik, M.; Jemth, A. S. Nat. Commun. 2017, 8, 1541.
[17] Lu, Y.; Jiang, G. F.; Xie, Z. B.; Chen, G. Q.; Le, Z. G. Chin. J. Org. Chem. 2018, 38, 1837.
[18] (a) Miao, Y.; Rahimi, M.; Geertsema, E. M.; Poelarends, G. J.; Curr. Opin. Chem. Biol. 2015, 25, 115.
(b) List, B.; Sun, D. Synfacts 2018, 14, 1192.
[19] Liu, L. S.; Xie, Z. B.; Zhang, C.; Fu, L. H.; Zhu, H. B.; Le, Z. G. Green Chem. Lett. Rev. 2018, 11, 503.
[20] (a) Wu, L. L.; Xiang, Y.; Yang, D. C.; Guan, Z.; He, Y. H. Catal. Sci. Technol. 2016, 6, 3963.
(b) Guan, Z.; Song, J.; Xue, Y.; Yang, D. C.; He, Y. H. J. Mol. Catal. B. Enzym. 2015, 111, 16.
(c) Chen, Y. J.; Xiang, Y.; He, Y. H.; Guan, Z. Tetrahedron Lett. 2019, 15, 1066.
[21] (a) Le, Z. G.; Liang, M.; Chen, Z. S.; Zhang, S. H.; Xie, Z. B. Molecules 2017, 22, 762.
(b) Liang, M.; Xie, Z. B.; Ai, F.; Le, Z. G. Chin. J. Org. Chem. 2016, 36, 2708.
[22] (a) Malcata, F. X.; Reyes, H. R.; Garcia, H. S.; Hill, C. G.; Amundson, C. H. Enzyme Microb. Technol. 1992, 14, 426.
(b) Carrea, G.; Ottolina, G.; Riva, S. Trends Biotechnol. 1995, 13, 63.
[23] Zaks, A.; Klibanov, A. M. J. Biol. Chem. 1988, 263, 8017.
[24] Thomas, M. T.; Scopes, K. R. Biochem. J. 1998, 330, 1087.
[25] Chen, Z.; Sandip, M.; Daniel, S. J. Org. Chem. 2009, 74, 419.
[26] Shen, Y. B.; Wang, L. X.; Sun, Y. M.; Dong, F. Y.; Yu, L. P.; Liu, Q.; Xiao, J. J. Org. Chem. 2020, 85, 1915.
文章导航

/