综述与进展

稠杂环吡啶并[1,2-a]苯并咪唑类化合物的合成研究进展

  • 杨凯 ,
  • 姚辰 ,
  • 高娟娟 ,
  • 陈思鸿 ,
  • 郑雪洁 ,
  • 邓璐璇 ,
  • 张毓娜 ,
  • 刘美娟 ,
  • 汪朝阳
展开
  • a 赣南医学院药学院 江西赣州 341000;
    b 华南师范大学化学学院 教育部环境理论化学重点实验室 广州 510006;
    c 赣南医学院康复学院 江西赣州 341000

收稿日期: 2020-05-27

  修回日期: 2020-06-15

  网络出版日期: 2020-07-01

基金资助

广东省科技计划(No.2017A010103016)、赣南医学院校级课题(No.YB201903)、华南师范大学大学生创新创业训练计划(No.202003)和华南师范大学学生课外科研课题(No.19HHGB08)资助项目.

Progress on the Synthesis of Pyrido[1,2-a]benzimidazoles

  • Yang Kai ,
  • Yao Chen ,
  • Gao Juanjuan ,
  • Chen Sihong ,
  • Zheng Xuejie ,
  • Deng Luxuan ,
  • Zhang Yu'na ,
  • Liu Meijuan ,
  • Wang Zhaoyang
Expand
  • a College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000;
    a Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006;
    c College of Sports and Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi 341000

Received date: 2020-05-27

  Revised date: 2020-06-15

  Online published: 2020-07-01

Supported by

Project supported by the Guangdong Provincial Science and Technology Project (No. 2017A010103016), the Scientific Research Project of Gannan Medical University (No. YB201903), the Undergraduates Innovation Project of South China Normal University (No. 202003) and the Extracurricular Project for Students' Scientific Research of South China Normal University (No.19HHGB08).

摘要

吡啶并[1,2-a]苯并咪唑是由三个芳环稠合组成的重要氮杂环化合物之一.由于含有该骨架的分子在药物化学及材料领域中显示出广泛的应用前景,故吡啶并[1,2-a]苯并咪唑类分子的合成在有机化学中倍受关注.基于逆合成分析的思路,依据不同环的构建方式,按照不同结构的反应底物类型,综述了近年吡啶并[1,2-a]苯并咪唑类化合物合成方法的研究进展,并对其未来发展方向进行了展望.

本文引用格式

杨凯 , 姚辰 , 高娟娟 , 陈思鸿 , 郑雪洁 , 邓璐璇 , 张毓娜 , 刘美娟 , 汪朝阳 . 稠杂环吡啶并[1,2-a]苯并咪唑类化合物的合成研究进展[J]. 有机化学, 2020 , 40(12) : 4168 -4183 . DOI: 10.6023/cjoc202005074

Abstract

Pyrido[1,2-a]benzimidazole is one of the important azaheterocycles with three fused aromatic rings. These molecules containing this skeleton have wide application prospects in the fields of medicinal chemistry and materials, and their syntheses have attracted much attention in organic chemistry. According to the retrosynthetic analysis on the construction of different rings in target molecules, the research progress on the synthesis of pyrido[1,2-a]benzimidazoles from different types of starting materials is reviewed, and its future development direction is prospected.

参考文献

[1] Stepien, M.; Gonka, E.; Zyla, M.; Sprutta, N. Chem. Rev. 2017, 117, 3479.
[2] Tan, J.-F.; Bormann, C. T.; Perrin, F. G.; Chadwick, F. M.; Seyerin, K.; Cramer, N. J. Am. Chem. Soc. 2019, 141, 10372.
[3] Gomha, S. M.; Eldebss, T. M. A.; Badrey, M. G.; Abdulla, M. M.; Mayhoub, A. S. Chem. Biol. Drug Des. 2015, 86, 1292.
[4] Xie, Y.-J.; Wu, J.; Che, X.-Z.; Chen, Y.; Huang, H.-W.; Deng, G.-J. Green Chem. 2016, 18, 667.
[5] Perin, N.; Bobanovic, K.; Zlatar, I.; Jelic, D.; Kelava, V.; Kostrun, S.; Markovic, V. G.; Brajsa, K.; Hranjec, M. Eur. J. Med. Chem. 2017, 125, 722.
[6] Jovanovic, I. N.; Jadresko, D.; Milicevic, A.; Hranjec, M.; Perin, N. Electrochim. Acta 2019, 297, 452.
[7] Okombo, J.; Brunschwig, C.; Singh, K.; Dziwornu, G. A.; Barnard, L.; Njoroge, M.; Wittlin, S.; Chibale, K. ACS Infect. Dis. 2019, 5, 372.
[8] Mayoka, G.; Njoroge, M.; Okombo, J.; Gibhard, L.; Sanches-Vaz, M.; Fontinha, D.; Birkholtz, L. M.; Reader, J.; van der Watt, M.; Coetzer, T. L.; Lauterbach, S.; Churchyard, A.; Bezuidenhout, B.; Egan, T. J.; Yeates, C.; Wittlin, S.; Prudencio, M.; Chibale, K. J. Med. Chem. 2019, 62, 1022.
[9] Takeshita, H.; Watanabe, J.; Kimura, Y.; Kawakami, K.; Takahashi, H.; Takemura, M.; Kitamura, A.; Someya, K.; Nakajima, R. Bioorg. Med. Chem. Lett. 2010, 20, 3893.
[10] Okombo, J.; Singh, K.; Mayoka, G.; Ndubi, F.; Barnard, L.; Njogu, P. M.; Njoroge, M.; Gibhard, L.; Brunschwig, C.; Vargas, M.; Keiser, J.; Egan, T. J.; Chibale, K. ACS Infect. Dis. 2017, 3, 411.
[11] Chalmers, B. A.; Saha, S.; Nguyen, T.; McMurtrie, J.; Sigurdsson, S. T.; Bottle, S. E.; Masters, K. S. Org. Lett. 2014, 16, 5528.
[12] Karak, P.; Dutta, C.; Dutta, T.; Koner, A. L.; Choudhury, J. Chem. Commun. 2019, 55, 6791.
[13] Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. Synthesis 2015, 47, 887.
[14] Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Chem. Commun. 2015, 51, 1555.
[15] Zhao, X.-Y.; Ding, Y.-Y.; Lu, Y.-T.; Kang, C.-M. Chin. J. Org. Chem. 2019, 39, 1304(in Chinese). (赵鑫雨, 丁扬扬, 吕英涛, 康从民, 有机化学, 2019, 39, 1304.)
[16] Khajuria, R.; Rasheed, S.; Khajuria, C.; Kapoor, K. K.; Das, P. Synthesis 2018, 50, 2131.
[17] Ahneman, D. T.; Estrada, J. G.; Lin, S. S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.
[18] (a) Yang, K.; Qiu, Y.-T.; Li, Z.; Wang, Z.-Y.; Jiang, S. J. Org. Chem. 2011, 76, 3151.
(b) Yang, K.; Li, Z.; Wang, Z.-Y.; Yao, Z.-Y.; Jiang, S. Org. Lett. 2011, 13, 4340.
[19] Abrams, R.; Lefebvre, Q.; Clayden, J. Angew. Chem., Int. Ed. 2018, 57, 13587.
[20] Venkatesh, C.; Sundaram, G. S. M.; Ila, H.; Junjappa, H. J. Org. Chem. 2006, 71, 1280.
[21] Liubchak, K.; Nazarenko, K.; Tolmachev, A. Tetrahedron 2012, 68, 2993.
[22] Chen, F.; Chen, H.; Wu, Q.-A.; Luo, S.-P. Chin. J. Org. Chem. 2020, 40, 339(in Chinese). (陈锋, 陈浩, 吴庆安, 罗书平, 有机化学, 2020, 40, 339.)
[23] Barolo, S. M.; Wang, Y.; Rossi, R. A.; Cuny, G. D. Tetrahedron 2013, 69, 5487.
[24] Wang, H.-G.; Wang, Y.; Peng, C.-L.; Zhang, J.-C.; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217.
[25] Masters, K. S.; Rauws, T. R. M.; Yadav, A. K.; Herrebout, W. A.; Van der Veken, B.; Maes, B. U. W. Chem.-Eur. J. 2011, 17, 6315.
[26] Wu, Y.-X.; Xi, Y.-C.; Zhao, M.; Wang, S.-Y. Chin. J. Org. Chem. 2018, 38, 2590(in Chinese). (吴亚星, 席亚超, 赵明, 王思懿, 有机化学, 2018, 38, 2590.)
[27] (a) Yang, Q. L.; Li, Y. Q.; Ma, C.; Fang, P.; Zhang, X. J.; Mei, T. S. J. Am. Chem. Soc. 2017, 139, 3293.
(b) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
(c) Xu, F.; Long, H.; Song, J.; Xu, H. C. Angew. Chem., Int. Ed. 2019, 58, 9017.
[28] Duan, Z.-L.; Zhang, L.; Zhang, W.-X.; Lu, L.-J.; Zeng, L.; Shi, R.-Y.; Lei, A.-W. ACS Catal. 2020, 10, 3828.
[29] Lv, S.-D.; Han, X.-X.; Wang, J.-Y.; Zhou, M.-Y.; Wu, Y.-W.; Ma, L.; Niu, L.-W.; Gao, W.; Zhou, J.-H.; Hu, W.; Cui, Y.-Z.; Chen, J.-B. Angew. Chem., Int. Ed. 2020, 59, 11573.
[30] Xue, F.-L.; Peng, P.; Shi, J.; Zhong, M.-L.; Wang, Z.-Y. Synth. Commun. 2014, 44, 1944.
[31] Rao, D. N.; Rasheed, S.; Vishwakarma, R. A.; Das, P. RSC Adv. 2014, 4, 25600.
[32] Kutsumura, N.; Kunimatsu, S.; Kagawa, K.; Otani, T.; Saito, T. Synthesis 2011, 3235.
[33] Qian, G.-Y.; Liu, B.-X.; Tan, Q.-T.; Zhang, S.-W.; Xu, B. Eur. J. Org. Chem. 2014, 4837.
[34] He, Y.-M.; Huang, J.-B.; Liang, D.-D.; Liu, L.-Y.; Zhu, Q. Chem. Commun. 2013, 49, 7352.
[35] Liang, D.-D.; He, Y.-M.; Liu, L.-Y.; Zhu, Q. Org. Lett. 2013, 15, 3476.
[36] Lv, Z.-G.; Liu, J.; Wei, W.; Wu, J.; Yu, W.-Q.; Chang, J.-B. Adv. Synth. Catal. 2016, 358, 2759.
[37] Lee, H. E.; Lee, M. J.; Park, J. K. Asian J. Org. Chem. 2019, 8, 1659.
[38] Xu, C.-R.; Wang, K.-X.; Li, D.-W.; Lin, L.-L.; Feng, X.-M. Angew. Chem., Int. Ed. 2019, 58, 18438.
[39] (a) Maiti, D.; Fors, B. P; Henderson, J. L.; Nakamura, Y.; Buchwald, S. L. Chem. Sci. 2011, 2, 57.
(b) Han, Y.; Zhang, M.; Zhang, Y.-Q.; Zhang, Z.-H. Green Chem. 2018, 20, 4891.
[40] Wexler, R. P.; Nuhant, P.; Senter, T. J.; Gale-Day, Z. J. Org. Lett. 2019, 21, 4540.
[41] Rasheed, S.; Rao, D. N.; Das, P. J. Org. Chem. 2015, 80, 9321.
[42] Yan, H.; Guo, H.; Zhou, X.-Q.; Zuo, Z.-Y.; Liu, J.-L.; Zhang, G.-H.; Zhang, S. Synlett 2019, 30, 1469.
[43] (a) Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
(b) Li, L.-X.; Li, Y.; Zhao, Z.-G.; Luo, H.-T.; Ma, Y.-N. Org. Lett. 2019, 21, 5995.
(c) Matsumoto, M.; Wada, K.; Urakawa, K.; Ishikawa, H. Org. Lett. 2020, 22, 781.
[44] Manna, S.; Matcha, K.; Antonchick, A. P. Angew. Chem., Int. Ed. 2014, 53, 8163.
[45] Liu, X.-L.; Chen, J.; Ma, T.-L. Org. Biomol. Chem. 2018, 16, 8662.
[46] Xie, Y.-J.; Wu, J.; Che, X.-Z.; Chen, Y.; Huang, H.-W.; Deng, G.-J. Green Chem. 2016, 18, 667.
[47] Zhang, W.-W.; Li, H.-J.; Wang, M.-R.; Wang, L.-J.; Zhang, A.-H.; Wu, Y.-C. New J. Chem. 2019, 43, 413.
[48] Wu, Z.-Q.; Huang, Q.; Zhou, X.-G.; Yu, L.-T.; Li, Z.-K.; Wu, D. Eur. J. Org. Chem. 2011, 5242.
[49] Yang, K.; Wang, Z.-Y.; Fu, J.-H.; Tan, Y.-H. Prog. Chem. 2010, 22, 2126(in Chinese). (杨凯, 汪朝阳, 傅建花, 谭越河, 化学进展, 2010, 22, 2126.)
[50] Cai, Q.; Li, Z. Q.; Wei, J. J.; Fu, L. B.; Ha, C. Y.; Pei, D. Q.; Ding, K. Org. Lett. 2010, 12, 1500.
[51] Zhou, B.-W.; Gao, J.-R.; Jiang, D.; Jia, J.-H.; Yang, Z.-P.; Jin, H.-W. Synthesis 2010, 2794.
[52] (a) Huo, J.-P.; Lu, M.-X.; Wang, Z.-Y.; Li, Y.-Z. Chin. J. Chem. 2012, 30, 2411.
(b) Tan, Y.-H.; Li, J.-X.; Xue, F.-L.; Qi, J.; Wang, Z.-Y. Tetrahedron 2012, 68, 2827.
(c) Tan, Y.-H.; Li, J.-X.; Huo, J.-P.; Xue, F.-L.; Wang, Z.-Y. Synth. Commun. 2014, 44, 2974.
(d) Huo, J.-P.; Wei, X.-P.; Mo, G.-Z.; Peng, P.; Zhong, M.-L.; Chen, R.-H.; Wang, Z.-Y. Chin. J. Org. Chem. 2014, 34, 92(in Chinese). (霍景沛, 韦新平, 莫广珍, 彭湃, 钟铭丽, 陈任宏, 汪朝阳, 有机化学, 2014, 34, 92.)
[53] Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2016, 45, 6888.
[54] Nagesh, H. N.; Suresh, A.; Reddy, M. N.; Suresh, N.; Subbalakshmi, J.; Sekhar, K. V. G. C. RSC Adv. 2016, 6, 15884.
[55] Kato, J.; Ito, Y.; Ijuin, R.; Aoyama, H.; Yokomatsu, T. Org. Lett. 2013, 15, 3794.
[56] da Silva, R. B.; Coelho, F. L.; Rodembusch, F. S.; Schwab, R. S.; Schneider, J. M. F. M.; Rampon, D. D.; Schneider, P. H. New J. Chem. 2019, 43, 11596.
[57] Yin, C.-X.; Huo, F.-J.; Cooley, N. P.; Spencer, D.; Bartholomew, K.; Barnes, C. L.; Glass, T. E. ACS Chem. Neurosci. 2017, 8, 1159.
[58] Panda, K.; Suresh, J. R.; Ila, H.; Junjappa, H. J. Org. Chem. 2003, 68, 3498.
[59] Kotovskaya,S. K.; Baskakova, Z. M.; Charushin, V. N.; Chupakhin, O. N.; Belanov, E. F.; Bormotov, N. I.; Balakhnin, S. M.; Serova. O. A. Pharm. Chem. J. 2005, 39, 574.
[60] Shaaban, M. R.; Eldebss, T. M. A.; Darweesh, A. F.; Farag, A. M. J. Heterocycl. Chem. 2008, 45, 1739.
[61] Ibrahim, M. A. Tetrahedron 2013, 69, 6861.
[62] Goli-Garmroodi, F.; Omidi, M.; Saeedi, M.; Sarrafzadeh, F.; Rafinejad, A.; Mahdavi, M.; Bardajee, G. R.; Akbarzadeh, T.; Firoozpour, L.; Shafiee, A.; Foroumadi, A. Tetrahedron Lett. 2015, 56, 743.
[63] Tireli, M.; Starcevic, K.; Martinovic, T.; Pavelic, S. K.; Karminski-Zamola, G.; Hranjec, M. Mol. Diversity 2017, 21, 201.
[64] Vodolazhenko, M. A.; Mykhailenko, A. E.; Gorobets, N. Y.; Desenko, S. M. J. Heterocycl. Chem. 2017, 54, 753.
[65] Lyons, D. M.; Huttunen, K. M.; Browne, K. A.; Ciccone, A.; Trapani, J. A.; Denny, W. A.; Spicer, J. A. Bioorg. Med. Chem. 2011, 19, 4091.
[66] Jardosh, H. H.; Sangani, C. B.; Patel, M. P.; Patel, R. G. Chin. Chem. Lett. 2013, 24, 123.
[67] Teng, Q.-H.; Peng, X.-J.; Mo, Z.-Y.; Xu, Y.-L.; Tang, H.-T.; Wang, H.-S.; Sun, H.-B.; Pan, Y.-M. Green Chem. 2018, 20, 2007.
[68] Jiang, Z.-Q.; Miao, D. Z.; Tong, Y.; Pan, Q.; Li, X.-T.; Hu, R.-H.; Han, S.-Q. Synthesis 2015, 47, 1913.
[69] Ge, Y.-Q.; Jia, J.; Yang, H.; Tao, X.-T.; Wang, J.-W. Dyes Pigm. 2011, 88, 344.
[70] Yang, H.; Ge, Y.-Q.; Jia, J.; Wang, J.-W. J. Lumin. 2011, 131, 749.
[71] Peng, J.-S.; Shang, G.-N.; Chen, C.-X.; Miao, Z.-S.; Li, B. J. Org. Chem. 2013, 78, 1242.
[72] Zheng, L.-Y.; Hua, R.-M. J. Org. Chem. 2014, 79, 3930.
[73] Ghosh, K.; Nishii, Y.; Miura, M. ACS Catal. 2019, 9, 11455.
[74] Mai, S.-Y.; Luo, Y.-X.; Huang, X.-Y.; Shu, Z.-H.; Li, B.-N.; Lan, Y.; Song, Q.-L. Chem. Commun. 2018, 54, 10240.
[75] Miao, W.-Q.; Liu, J.-Q.; Wang, X.-S. Org. Biomol. Chem. 2017, 15, 5325.
[76] Liu, J.-M.; Zhang, N.-F.; Yue, Y.-Y.; Liu, G.-H.; Liu, R.; Zhang, Y.-L.; Zhuo, K.-L. Eur. J. Org. Chem. 2013, 7683.
[77] Yan, L.-P.; Zhao, D.-B.; Lan, J.-B.; Cheng, Y.-Y.; Guo, Q.; Li, X.-Y.; Wu, N.-J.; You, J.-S. Org. Biomol. Chem. 2013, 11, 7966.
[78] Chen, C.-X.; Shang, G.-N.; Zhou, J.-J.; Yu, Y.-H.; Li, B.; Peng, J.-S. Org. Lett. 2014, 16, 1872.
[79] Zhao, G.-Y.; Chen, C.-X.; Yue, Y.-X.; Yu, Y.-H.; Peng, J.-S. J. Org. Chem. 2015, 80, 2827.
[80] Li, X.; Chen, X.; Wang, H.; Chen, C.-X.; Sun, P.; Mo, B.-C.; Peng, J.-S. Org. Biomol. Chem. 2019, 17, 4014.
[81] Bera, S. K.; Alam, M. T.; Mal, P. J. Org. Chem. 2019, 84, 12009.
[82] Wezeman, T.; Scopelliti, R.; Tirani, F. F.; Severin, K. Adv. Synth. Catal. 2019, 361, 1383.
[83] Huang, J.-R.; Dong, L.; Han, B.; Peng, C.; Chen, Y.-C. Chem.-Eur. J. 2012, 18, 8896.
[84] Dong, L.; Huang, J.-R.; Qu, C.-H.; Zhang, Q.-R.; Zhang, W.; Han, B.; Peng, C. Org. Biomol. Chem. 2013, 11, 6142.
[85] Ghorai, D.; Choudhury, J. Chem. Commun. 2014, 50, 15159.
[86] Thenarukandiyil, R.; Dutta, C.; Choudhury, J. Chem.-Eur. J. 2017, 23, 15529.
[87] Morioka, R.; Nobushige, K.; Satoh, T.; Hirano, K.; Miura, M. Org. Lett. 2015, 17, 3130.
[88] Reddy, V. P.; Iwasaki, T.; Kambe, N. Org. Biomol. Chem. 2013, 11, 2249.
[89] Sun, M.-M.; Wu, H.-D.; Zheng, J.-N.; Bao, W.-L. Adv. Synth. Catal. 2012, 354, 835.
[90] Chen, L.; Zhang, X.; Chen, B.; Li, B.; Li, Y.-B. Chem. Heterocycl. Compd. 2017, 53, 618.
[91] Reddy, C. R.; Burra, A. G. J. Org. Chem. 2019, 84, 9169.
[92] Peng, H.-B.; Yu, J.-T.; Jiang, Y.; Wang, L.; Cheng, J. Org. Biomol. Chem. 2015, 13, 5354.
[93] Li, P.-Y.; Zhang, X.-Y.; Fan, X.-S. J. Org. Chem. 2015, 80, 7508.
[94] Qi, Z.-S.; Yu, S.-J.; Li, X.-W. J. Org. Chem. 2015, 80, 3471.
[95] Xue, C.-W.; Han, J.-W.; Zhao, M.; Wang, L.-M. Org. Lett. 2019, 21, 4402.
[96] (a) Mao, Z.-Z.; Wang, Z.-Y.; Hou, X.-N.; Song, X.-M.; Luo, Y.-F. Chin. J. Org. Chem. 2008, 28, 542(in Chinese). (毛郑州, 汪朝阳, 侯晓娜, 宋秀美, 罗玉芬, 有机化学, 2008, 28, 542.)
(b) Peng, P.; Xiong, J.-F.; Li, B.; Mo, G.-Z.; Chen, R.-H.; Wang, Z.-Y. Chin. J. Org. Chem. 2013, 33, 1891(in Chinese). (彭湃, 熊金锋, 李豹, 莫广珍, 陈任宏, 汪朝阳, 有机化学, 2013, 33, 1891.)
(c) Wu, Y.-C.; You, J.-Y.; Guan, L.-T.; Shi, J.; Cao, L.; Wang, Z.-Y. Chin. J. Org. Chem. 2015, 35, 2465(in Chinese). (吴彦城, 尤嘉宜, 关丽涛, 石杰, 曹梁, 汪朝阳, 有机化学, 2015, 35, 2465.)
(d) Wang, N.; Arulkumar, M.; Chen, X.-Y.; Wang, B.-W.; Chen, S.-H.; Yao, C.; Wang, Z.-Y. Chin. J. Org. Chem. 2019, 39, 2771(in Chinese). (王能, Arulkumar, M., 陈孝云, 王柏文, 陈思鸿, 姚辰, 汪朝阳,有机化学, 2019, 39, 2771.)
[97] (a) Wu, Y.-C.; Huo, J.-P.; Cao, L.; Ding, S.; Wang, L.-Y.; Cao, D.-R.; Wang, Z.-Y. Sens. Actuators, B 2016, 237, 865.
(b) Wu, Y.-C.; Luo, S.-H.; Cao, L.; Jiang, K.; Wang, L.-Y.; Xie, J.-C.; Wang, Z.-Y. Anal. Chim. Acta 2017, 976, 74.
(c) Pang, C.-M.; Luo, S.-H.; Jiang, K.; Wang, B.-W.; Chen, S.-H.; Wang, N.; Wang, Z.-Y. Dyes Pigm. 2019, 170, 107651.
[98] Milisiunaite, V.; Arbaciauskiene, E.; Bieliauskas, A.; Vilkauskaite, G.; Sackus, A.; Holzer, W. Tetrahedron 2015, 71, 3385.
[99] Rustagi, V.; Aggarwal, T.; Verma, A. K. Green Chem. 2011, 13, 1640.
[100] Rustagi, V.; Tiwari, R.; Verma, A. K. Eur. J. Org. Chem. 2012, 4590.
[101] Ouyang, H.-C.; Tang, R.-Y.; Zhong, P.; Zhang, X.-G.; Li, J.-H. J. Org. Chem. 2011, 76, 223.
[102] Gvozdev, V. D.; Shavrin, K. N.; Baskir, E. G.; Egorov, M. P.; Nefedov, O. M. Mendeleev Commun. 2017, 27, 231.
[103] Chaitanya, T. K.; Prakash, K. S.; Nagarajan, R. Tetrahedron 2011, 67, 6934.
[104] Mishra, M.; Twardy, D.; Ellstrom, C.; Wheeler, K. A.; Dembinski, R.; Török, B. Green Chem. 2019, 21, 99.
[105] Adib, M.; Zainali, M.; Kim, I. Synlett 2016, 27, 1844.
[106] Yan, C.-G.; Wang, Q.-F.; Song, X.-K.; Sun, J. J. Org. Chem. 2009, 74, 710.
[107] Hu, Y.; Wang, T.; Liu, Y.-Z.; Nie, R.-F.; Yang, N.-H.; Wang, Q.-T.; Li, G.-B.; Wu, Y. Org. Lett. 2020, 22, 501.
文章导航

/