研究论文

钯催化α-取代苄腈与支链烯丙基碳酸酯的烯丙基烷基化反应

  • 张高鹏 ,
  • 江阳杰 ,
  • 丁昌华 ,
  • 侯雪龙
展开
  • a 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032;
    b 上海大学化学系 上海 200444;
    c 中国科学院上海有机化学研究所 上海-香港化学合成联合实验室 上海 200032;
    d 中国科学院大学 北京 100049

收稿日期: 2020-06-05

  修回日期: 2020-06-23

  网络出版日期: 2020-07-01

基金资助

国家自然科学基金(Nos.21532010,21772215),中国科学院先导项目(No.XDB20030100),中国科学院,上海市科委和香港裘搓基金会资助项目.

Palladium-Catalyzed Allylic Alkylation Reaction of α-Substituted Benzyl Nitriles with Branched Allyl Carbonates

  • Zhang Gaopeng ,
  • Jiang Yangjie ,
  • Ding Changhua ,
  • Hou Xuelong
Expand
  • a State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    b Department of Chemistry, Shanghai University, Shanghai 200032;
    c Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    d University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-06-05

  Revised date: 2020-06-23

  Online published: 2020-07-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21532010, 21772215), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20030100), the Chinese Academy of Sciences, the Technology Commission of Shanghai Municipality, and the Croucher Foundation of Hong Kong.

摘要

报道了钯催化下α-取代苄腈作为亲核试剂,与支链烯丙基碳酸酯的烯丙基烷基化反应,在易得的大位阻氮杂环卡宾配体存在下,以良好的收率、区域选择性及非对映选择性得到支链烯丙基烷基化产物.

本文引用格式

张高鹏 , 江阳杰 , 丁昌华 , 侯雪龙 . 钯催化α-取代苄腈与支链烯丙基碳酸酯的烯丙基烷基化反应[J]. 有机化学, 2020 , 40(10) : 3399 -3409 . DOI: 10.6023/cjoc202006007

Abstract

Pd-catalyzed allylic alkylation reaction of α-substituted benzyl nitriles with branched allyl carbonates in the presence of bulkier N-heterocyclic carbene ligand was reported, which provided the corresponding allylated products in good yield with high regio- and diastereo-selectivity.

参考文献

[1] (a) Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 6, 4387.
(b) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
(c) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.
[2] (a) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catalysis, Vol. 2, Eds.:Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Springer- Verlag, Berlin, 1999, p. 833.
(b) Trost, B. M. Chem. Rev. 1996, 96, 395.
(c) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
(d) Ding, C.-H.; Hou, X.-L. In Comprehensive Organic Synthesis, 2nd ed., Vol. 4, Eds.:Molander, G. A.; Knochel, P., Elsevier, Oxford, 2014, p. 648.
(e) Zhang, J.-L.; Jiang, G.-X. Acta Chim. Sinica 2018, 76, 890.
[3] (a) Hegedus, L. S.; Darlington, W. H.; Russell, C. E. J. Org. Chem. 1980, 45, 5193.
(b) Hoffmann, H. M. R.; Otte, A. R.; Wilde, A. Angew. Chem., Int. Ed. 1992, 31, 234.
(c) Hoffmann, H. M. R.; Otte, A. R.; Wilde, A.; Menzer, S.; Williams, D. J. Angew. Chem., Int. Ed. 1995, 34, 100.
[4] (a) Hayashi, T.; Konishi, M.; Yokota, K.; Kumada, M. J. Organomet. Chem. 1985, 285, 359.
(b) Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura, T. Organometallics 1998, 17, 4835.
(c) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686.
(d) Le, H.; Batten, A.; Morken, J. P. Org. Lett. 2014, 16, 2096.
(e) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044.
(f) Li, Y.-X.; Xuan, Q.-Q.; Liu, L.; Wang, D.; Chen, Y.-J.; Li, C.-J. J. Am. Chem. Soc. 2013, 135, 12536.
(g) Chen, J.-P.; Peng, Q.; Lei, B.-L.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 14180.
(h) Bai, D.-C.; Yu, F.-L.; Wang, W.-Y.; Chen, D.; Li, H.; Liu, Q.-R.; Ding, C.-H.; Chen, B.; Hou, X.-L. Nat. Commun. 2016, 7, 11806.
(i) Yu, F.-L.; Bai, D.-C.; Liu, X.-Y.; Jiang, Y.-J.; Ding, C.-H.; Hou, X.-L. ACS Catal. 2018, 8, 3317.
[5] (a) Trost, B. M.; Keinan, E. Tetrahedron Lett. 1980, 21, 2591.
(b) Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759.
(c) Braun, M.; Laicher, F.; Meier, T. Angew. Chem., Int. Ed. 2000, 39, 3494.
(d) Yan, X.-X.; Liang, C.-G.; Zhang, Y.; Hong, W.; Cao, B.-X.; Dai, L.-X.; Hou, X.-L. Angew. Chem., Int. Ed. 2005, 44, 6544.
(e) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718.
(f) Zhang, K.; Peng, Q.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2008, 47, 1741.
(g) Chen, J.-P.; Ding, C.-H.; Liu, W.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2010, 132, 15493.
(h) Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
(i) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
(j) Sha, S.-C.; Zhang, J.-D.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2013, 135, 17602.
[6] (a) Tsuji, J.; Shimizu, I.; Minami, I.; Ohashi, Y. J. Org. Chem. 1985, 50, 1523.
(b) Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309.
(c) Evans, P. A.; Oliver, S.; Chae, J. J. Am. Chem. Soc. 2012, 134, 19314.
(d) Maji, T.; Tunge, J. K. Org. Lett. 2014, 16, 5072.
(e) Turnbull, B. W. H.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 6156.
(f) Turnbull, B. W. H.; Oliver, S.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 15374.
[7] (a) Bai, D.-C.; Liu, X.-Y.; Li, H.; Ding, C.-H.; Hou, X.-L. Chem. Asian J. 2017, 12, 212.
(b) Zhang, G.-P.; Huang S.; Jiang, Y.-J.; Liu, X.-Y.; Ding, C.-H.; Wei, Y.; Hou, X.-L. Chem. Commun. 2019, 55, 6449.
[8] Poli, G.; Prestat, G.; Liron, F.; Kammerer-Pentier, C. Top. Organomet. Chem. 2012, 38, 1.
[9] (a)Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka, S.; Ebihara, M.; Kawamura. T. Organometallics 1998, 17, 4835.
(b) Bai, D. C.; Wang, W. Y.; Ding, C. H.; Hou, X. L. Synlett 2015, 26, 1510.
[10] Triandafillidi, I.; Kokotou, M. G.; Kokotos, C. G. Org. Lett. 2018, 20, 36.
[11] (a) Yuan, Q.-J.; Yao, K.; Liu, D.-L.; Zhang, W.-B. Chem. Commun. 2015, 51, 11834.
(b) Hayashi, M.; Brown, L. E.; Porco, Jr. J. A. Eur. J. Org. Chem. 2016, 4800.
文章导航

/