综述与进展

1,3-茚满二酮参与的多组分反应研究进展

  • 孙晶 ,
  • 曹鋆 ,
  • 韩莹 ,
  • 颜朝国
展开
  • 扬州大学化学化工学院 江苏扬州 225002

收稿日期: 2020-05-02

  修回日期: 2020-06-11

  网络出版日期: 2020-07-09

基金资助

国家自然科学基金(No.21572196)资助项目.

Progress in Multicomponent Reactions Involving 1,3-Indanedione

  • Sun Jing ,
  • Cao Jun ,
  • Han Ying ,
  • Yan Chao-Guo
Expand
  • College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002

Received date: 2020-05-02

  Revised date: 2020-06-11

  Online published: 2020-07-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 21572196).

摘要

1,3-茚满二酮是一种典型的环状1,3-二羰基化合物,所具有的一个亚甲基、两个羰基和稠合的苯环结构,使其具有连续的三个亲电反应和亲核反应位点.另一方面,1,3-茚满二酮能够在酸或碱性介质中发生自身缩合反应,形成稠环多羰基化合物.1,3-茚满二酮(1)还与芳香醛2发生Knoevenagel反应得到的2-芳亚甲基-1,3-茚满二酮3,是活泼的αβ-不饱和羰基化合物.因此1,3-茚满二酮具有多重反应活性,可作为多组分反应和多米诺反应中的关键底物,构建一系列螺环、桥环以及稠合的全碳环和杂环化合物.总结了近年来1,3-茚满二酮参与的一系列多组分串联反应以及其在构建具有重要生物学活性的茚酮稠合多环化合物方面的应用,揭示了1,3-茚满二酮的丰富多样的反应方式,对于反应机理、反应特点以及反应的局限性进行了详细介绍,并对今后的发展方向作出了展望.

本文引用格式

孙晶 , 曹鋆 , 韩莹 , 颜朝国 . 1,3-茚满二酮参与的多组分反应研究进展[J]. 有机化学, 2020 , 40(12) : 4122 -4146 . DOI: 10.6023/cjoc202005003

Abstract

1,3-Indanedione is one of typical cyclic 1,3-dicarbonyl compounds with one methylene unit, two carbonyl groups and fused phenyl ring. Thus, it has three contiguous reactive electrophilic and nucleophilic sites. On the other hand, 1,3-indanedione undergoes homopolymerization to form several cyclic compounds with polycarbonyl groups under acidic or basic medium. 2-Arylidene-1,3-indanediones derived from condensation of aromatic aldehydes with 1,3-indanedione are also reactive α,β-unsaturated carbonyl compounds. Therefore, 1,3-indanedione has diverse reactivities and is the key substrate in domino and multicomponent reactions. It has been widely employed to construct various spiro, bridged and fused cyclic compounds. The recent achievements on multicomponent reactions involving 1,3-indanedione from the structures of the target compounds and the important applications on the syntheses of biologically important indanone-containing carbocyclic and heterocyclic compounds are summarized. The effects of catalyst, reaction mechanism, experimental results, reaction characteristics and limitations are briefly discussed. At last, the future development on the diverse reactions of 1,3-indanedione is also prospected.

参考文献

[1] Khan, F. A.; Maalik, A. Trop. J. Pharm. Res. 2015, 14, 1937.
[2] (a) Tu, S. J.; Jiang, B.; Zhang, J. Y.; Jia, R. H.; Zhang, Y.; Yao, C. S. Org. Biomol. Chem. 2006, 4, 3980.
(b) Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.
(c) Ahadi, S.; Moafi, L.; Feiz, A.; Bazgir, A. Tetrahedron 2011, 67, 3954.
(d) Liang, B.; Kalidindi, S.; Porco, J. A. Stephenson, C. Org. Lett. 2010, 12, 572.
(e) Nishiyama, T.; Shiotsu, S.; Tsujita, H. Polym. Degrad. Stab. 2002, 76, 435.
[3] Sharma, L. K.; Kimb, K. B.; Elliott, G. I. Green Chem. 2011, 13, 1546.
[4] Asadi, S.; Mohammadi Z. G. Mol. Diversity 2015, 20, 111.
[5] (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
(b) Peppe, C.; Chagas, R. P.; Burrow, R. A. J. Organomet. Chem. 2008, 693, 3441.
(c) Ren, Z.; Cao, W.; Ding, W.; Wang, Y.; Wang, L. Synth. Commun. 2004, 34, 3785.
(d) Arai, S.; Nakayama, K.; Hatano, K.; Shioiri, T. J. Org. Chem. 1998, 63, 9572.
(e) Miyagawa, T.; Tatenuma, T.; Tadokoro, M.; Satoh, T. Tetrahedron 2008, 64, 5279.
[6] Wang, G. W.; Gao, J. Org. Lett. 2009, 11, 2385.
[7] Yang, S. X.; Chen, J.; Wu, X. Y.; Deng, H. M.; Shao, M.; Zhang, H.; Cao, W. G. Chin. J. Org. Chem. 2010, 30, 1521(in Chinese). (杨树新, 陈杰, 吴小余, 邓红梅, 邵敏, 张慧, 曹卫国, 有机化学, 2010, 30, 1521.)
[8] Das, U.; Tsai, Y. L.; Lin, W. W. Org. Biomol. Chem. 2013, 11, 44.
[9] Nemcsok, T.; Rapi, Z.; Bagi, P.; Olah, A.; Keglevich, G.; Bako, P. Catal. Lett. 2020, 150, 930.
[10] Banothu, J.; Basavoju, S.; Bavantula, R. J. Heterocycl. Chem. 2015, 52, 853.
[11] Liu, R. Z.; Shi, R. G.; Sun, J.; Yan, C. G. Org. Chem. Front. 2017, 4, 354.
[12] Jiang, Y. H.; Sun, J.; Sun, Q.; Yan, C. G. Asian J. Org. Chem. 2017, 6, 862.
[13] Hu, F.; Wei, Y.; Shi, M. Tetrahedron 2012, 68, 7911.
[14] Zhan, G.; Shi, M. L.; He, Q.; Lin, W. J.; Ouyang, Q.; Du, W.; Chen, Y. C. Angew. Chem., Int. Ed. 2016, 55, 2147.
[15] Yang, Y.; Jiang, Y.; Du, W.; Chen, Y. C. Chem.-Eur. J. 2020, 26, 1754.
[16] Lu, Y. L.; Sun, J.; Jiang, Y. H.; Yan, C. G. RSC Adv. 2016, 6, 50471.
[17] Ramachary, D. B.; Reddy, T. P.; Kumar, A. S. Org. Biomol. Chem. 2016, 14, 6517.
[18] Manjappa, K. B.; Peng, Y. T.; Jhang, W. F.; Yang, D. Y. Tetrahedron 2016, 72, 853.
[19] Shen, G. L.; Sun, J.; Yan, C. G. Chin. J. Chem. 2016, 34, 412.
[20] Jin, G.; Sun, J.; Yan, C. G. RSC Adv. 2016, 6, 84379.
[21] Shi, R. G.; Sun, J.; Yan, C. G. ACS Omega 2017, 2, 7820.
[22] Liu, C. Z.; Han, Y.; Qi, W. J.; Yan, C. G. Heterocycl. Commun. 2016, 22, 301.
[23] Qi, W. J.; Han, Y.; Liu, C. Z.; Yan, C. G. Synthesis 2016, 48, 4465.
[24] Chen, L.; Sun, J.; Huang, Y.; Zhang, Y.; Yan, C. G. Sci. Rep. 2017, 7, 12418.
[25] Huang, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 10496.
[26] Zhao, B.; Liang, H. W.; Yang, J.; Yang, Z.; Wei, Y. ACS Catal. 2017, 7, 5612.
[27] Yu, J.; Chien, H.; Lin, Y.; Karanam, P.; Chen, Y.; Lin, W. W. Chem. Commun. 2018, 54, 9921.
[28] Chen, Y. R.; Ganapuram, M. R.; Hsieh, K. H.; Chen, K. H.; Karanam, P.; Vagh, S.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2018, 54, 12702.
[29] Duan, J. D.; Mao, Y. Y.; Zhang, L.; Zhu, N.; Fang, Z.; Guo, K. Adv. Synth. Catal. 2020, 362, 695.
[30] Huang, Y.; Fang, H. L.; Huang, Y. X.; Sun, J.; Yan, C. G. J. Org. Chem. 2019, 84, 12437.
[31] (a) Qiu, X. L.; Meng, W. D.; Qing, F. L. Tetrahedron 2004, 60, 6711.
(b) Qiu, X. L.; Qing, F. L. Eur. J. Org. Chem. 2011, 3261.
(c) Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.
(d) Acena, J. L.; Simon-Fuentes, A.; Fustero, S. Curr. Org. Chem. 2010, 14, 928.
(e) March, T. L.; Johnston, M. R.; Duggan, P. J.; Gardiner, J. Chem. Biodiversity 2012, 9, 2410.
(f) Remete, A. M.; Nonn, M.; Fustero, S.; Fülöp, F.; Kiss, L. Tetrahedron 2018, 74, 6367.
[32] (a) Yoder, N. C.; Jumar, K. Chem. Soc. Rev. 2002, 31, 335.
(b) Akcay, G.; Kumar, K. J. Fluorine Chem. 2009, 130, 1178.
(c) Salwiczek, M.; Nyakatura, E. K.; Gerling, U. I. M.; Ye, S.; Koksch, B. Chem. Soc. Rev. 2012, 41, 2135.
(d) Marsh, E.; Neil, G. Acc. Chem. Res. 2014, 47, 2878.
(e) Berger, A. A.; Völler, J. S.; Budisa, N.; Koksch, B. Acc. Chem. Res. 2017, 50, 2093.
(f) Huhmann, S.; Koksch, B. Eur. J. Org. Chem. 2018, 3667.
[33] Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[34] Smits, R. C.; Cadicamo, D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.
[35] Winter, M.; Faust, K.; Himmelsbach, M.; Waser, M. Org. Biomol. Chem. 2019, 17, 5731.
[36] Li, Y. M.; Zhang, H. K.; Wei, R.; Miao, Z. W. Adv. Synth. Catal. 2017, 359, 4158.
[37] Rajawat, A.; Khandelwal, S.; Kumar, M. RSC Adv. 2014, 4, 5105.
[38] Khandelwal, S.; Tailor, Y. K.; Kumar, M. J. Mol. Liq. 2016, 215, 345.
[39] Tailor, Y. K.; Khandelwal, S.; Jain, H. K. Curr. Org. Synth. 2015, 12, 484.
[40] Khandelwal, S.; Rajawat, A.; Tailor, K. Y.; Kumar, M. Comb. Chem. High Throughput Screening 2014, 17, 763.
[41] Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2015, 5, 48675.
[42] Rushell, E.; Tailor, Y. K.; Khandelwal, S.; Verma, K.; Agarwal, M.; Kumar, M. New J. Chem. 2019, 43, 12462.
[43] Yang, S. M.; Karanam, P.; Wang, M.; Jang, Y. J.; Yeh, Y. S.; Tseng, P. Y.; Ganapuram, M. R.; Liou, Y. C.; Lin, W. W. Chem. Commun. 2019, 55, 13981.
[44] Majumder, S.; Sharma, M.; Bhuyan, P. J. Tetrahedron Lett. 2013, 54, 6868.
[45] Wang, X. H.; Yan, C. G. Synthesis 2014, 46, 1059.
[46] Addla, D.; Bhima; Sridhar, B.; Devi, A.; Kantevari, S. Bioorg. Med. Chem. Lett. 2012, 22, 7475.
[47] Yang, W. J.; Zhang, J.; Sun, J.; Yan, C. G. Eur. J. Org. Chem. 2016, 5423.
[48] Mohammad, H. R.; Mohammad, H. M.; Razieh, M. J. Chem. Res. 2017, 41, 430.
[49] Pelit, E. Chem. Sci. Int. J. (CSIJ) 2017, 20, 1.
[50] Li, M. M.; Duan, C. S.; Yu, Y. Q.; Xu, D. Z. Dyes Pigm. 2018, 150, 202.
[51] Maleki, A.; Yeganeh, N. N. Appl. Organomet. Chem. 2017, 31, e3814.
[52] Rather, R. A.; Siddiqui, Z. N. Appl. Organomet. Chem. 2019, 33, e5176.
[53] Leila, Z. F.; Mohammad, N.; Samira, N. K. J. Organomet. Chem. 2019, 894, 18.
[54] Hernandez, J. O.; Lizarazo, C.; Cobo, J.; Portilla, J. RSC Adv. 2019, 9, 27318.
[55] Bagheri, M.; Gholamzadeh, P.; Ziarani, G. M.; Badiei, A. Res. Chem. Intermed. 2019, 45, 3301.
[56] Mohammadi, A.; Mohammad, B.; Nasri, S. RSC Adv. 2019, 9, 16525.
[57] Luo, Q.; Huang, R.; Xiao, Q.; Kong, L. B.; Lin, J.; Yan, S. J. ACS Omega 2019, 4, 6637.
[58] Gao, Y.; Liu, D. H.; Fu, Z. Q.; Huang, W. Org. Lett. 2019, 21, 926.
[59] Cao, J.; Sun, J.; Yan, C. G. Org. Biomol. Chem. 2018, 16, 4170.
[60] Chang, Y. P.; Gurubrahamam, R.; Chen, K. M. Org. Lett. 2015, 17, 2908.
[61] Reddy, G. M.; Ko, C. T.; Hsieh, K. H.; Lee, C. J.; Das, U.; Lin, W. W. J. Org. Chem. 2016, 81, 2420.
[62] Yang, R. Y.; Sun, J.; Yan, C. G. ACS Omega 2018, 3, 5406.
[63] Champetter, P.; Castillo-Aguilera, O.; Taillier, C. Briere, J. F.; Dalla, V.; Oudeyer, S.; Comesse, S. Eur. J. Org. Chem. 2019, 7703.
[64] Yang, W. J.; Fang, H. L.; Sun, J.; Yan, C. G. ACS Omega 2019, 4, 13553.
[65] Sun, J.; Yang, R. Y.; Zhan, S. C.; Yan, C. G. ChemistrySelect 2019, 4, 10100.
[66] Zhan, S. C.; Sun, J.; Liu, R. Z.; Yan, C. G. Org. Biomol. Chem. 2020, 18, 163.
[67] Ye, R.; Yan, C. G. Eur. J. Org. Chem. 2019, 5882.
[68] (a) Kohlhagen, G.; Paull, K.; Cushman, M.; Nagafuji, P.; Pommier, Y. Mol. Pharmacol. 1998, 54, 50.
(b) Strumberg, D.; Pommier, Y.; Paull, K.; Jayaraman, M.; Nagafuji, P.; Cushman, M. J. Med. Chem. 1999, 42, 446.
(c) Cushman, M.; Jayaraman, M.; Vroman, J. A.; Fukunaga, A. K.; Fox, B. M.; Kohlhagen, G.; Strumberg, D.; Pommier, Y. J. Med. Chem. 2000, 43, 3688.
[69] (a) Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.; Hollingshead, M.; Pommier, Y.; Cushman, M. J. Med. Chem. 2006, 49, 6283.
(b) Morrell, A.; Placzek, M.; Parmley, S.; Antony, S.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2007, 50, 4419.
(c) Kiselev, E.; DeGuire, S.; Morrell, A.; Agama, K.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2011, 54, 6106.
(d) Kiselev, E.; Agama, K.; Pommier, Y.; Cushman, M. J. Med. Chem. 2012, 55, 1682.
(e) Nguyen, T. X.; Abdelmalak, M.; Marchand, C.; Agama, K.; Pommier, Y.; Cushman, M. J. Med. Chem. 2015, 58, 3188.
(f) Lv, P. C.; Elsayed, M. S. A.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. J. Med. Chem. 2016, 59, 4890.
[70] Huang, C. Y.; Kavala, V.; Kuo, C. W.; Konala, A.; Yang, T. H.; Yao, C. F. J. Org. Chem. 2017, 82, 1961.
[71] Abdelrazek, F. M.; Metz, P.; Jaeger, A. J. Heterocycl. Chem. 2019, 56, 1939.
[72] Eisert, B.; Geiss, F. Chem. Ber. 1961, 94, 929.
[73] Drew, M. G. B.; Vickery, B.; Willey, G. R. J. Chem. Soc., Perkin Trans. 2 1982, 1297.
[74] Bello, K. A.; Cheng, L.; Griffiths, J. J. Chem. Soc., Perkin Trans. 2 1987, 815.
[75] Payili, N.; Rekula, S. R.; Aitha, A.; Mutha, A. K.; Naidu, C. G.; Yennam, S. Org. Biomol. Chem. 2019, 17, 9442.
[76] Zhang, L.; Duan, J. D.; Xu, G. C.; Ding, X. J.; Mao, Y. Y.; Rong, B. S.; Zhu, N.; Fang, Z.; Li, Z. J.; Guo. K. J. Org. Chem. 2020, 85, 2532.
[77] Abdelrazek, F. M.; Metz, P.; Jaeger, A. J. Heterocycl. Chem. 2019, 56, 1939.
[78] Amsharov, K. Y.; Jansen, M. J. Org. Chem. 2008, 73, 2931.
[79] Cao, J.; Sun, J.; Yan, C. G. Org. Biomol. Chem. 2019, 17, 9008.
[80] Wu, M. C.; Yang, J. H,; Luo, F.; Cheng, C. G.; Zhu, G. G. Org. Biomol. Chem. 2019, 17, 5684.
[81] Cao, J.; Sun, J.; Yan, C. G. J. Org. Chem. 2020, 85, 2168.
[82] Chen, R.; Xu, S.; Fan, X.; Li, H.; Tang, Y.; He, Z. J. Org. Biomol. Chem. 2015, 13, 398.
[83] Zhang, Y. Y.; Han, Y.; Sun, J.; Yan, C. G. ChemistrySelect 2017, 2, 7382.
[84] Yang, W. J.; Zhang, J.; Sun, J.; Xie, Y. J.; Yan, C. G. Tetrahedron 2017, 73, 3387.
[85] Manick, A. D.; Salgues, B.; Parrain, J. L.; Zaborova, E.; Fages, F.; Amatore, M.; Commeiras L. Org. Lett. 2020, 22, 1894.
[86] Liegeois, J. F.; Bruhwyler, J.; Rogister, F.; Delarge, J. Curr. Med. Chem. 1995, 1, 471.
[87] Peters, J. U.; Galley, G.; Jacobsen, H.; Czech, C.; DavidPierson, P.; Kitas, E. A.; Ozmen, L. Bioorg. Med. Chem. Lett. 2007, 17, 5918.
[88] Fuwa, H.; Takahashi, Y.; Konno, Y.; Watanabe, N.; Miyashita, H.; Sasaki, M.; Natsugari, H.; Kan, T.; Fukuyama, T.; Tomita, T.; Iwatsubo, T. ACS Chem. Biol. 2007, 2, 408.
[89] Shi, R. G.; Wang, X. H.; Liu, R. Z.; Yan, C. G. Chem. Commun. 2016, 52, 6280.
[90] Samineni, R.; Srihari, P.; Mehta, G. Org. Lett. 2016, 18, 2832.
[91] Yao, Q. Y.; Kong, L. K.; Wang, M. D.; Yuan, Y.; Sun, R. Z.; Li, Y. Z. Org. Lett. 2018, 20, 1744.
文章导航

/