综述与进展

仿生金属配合物催化的C(sp3)—H键不对称氧化反应研究进展

  • 孙强盛 ,
  • 孙伟
展开
  • 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 分子合成科学卓越创新中心 兰州 730000

收稿日期: 2020-06-05

  修回日期: 2020-06-19

  网络出版日期: 2020-07-09

基金资助

国家自然科学基金(Nos.21773273,21473226,21902166)、中国科学院前沿科学重点研究计划(No.QYZDJ-SSW-SLH051)和江苏省自然科学基金青年基金(No.BK20170420)资助项目.

Recent Progress in C(sp3)-H Asymmetric Oxidation Catalyzed by Bioinspired Metal Complexes

  • Sun Qiangsheng ,
  • Sun Wei
Expand
  • State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000

Received date: 2020-06-05

  Revised date: 2020-06-19

  Online published: 2020-07-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21773273, 21473226, 21902166), the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH051) and the Natural Science Foundation of Jiangsu Province (No. BK20170420).

摘要

C—H氧化反应是一类重要的有机反应,其中C—H不对称氧化反应可以将简单烃类化合物直接转化为手性醇和酮等,为复杂分子的合成提供了更加经济和高效的方法.尽管在过去的数十年,很多化学家致力于不对称C—H氧化反应研究,但由于C—H键本身的惰性和C—H键之间微弱的立体性差异,该研究领域的进展依然缓慢.结合影响C—H氧化反应的因素、生物酶催化氧化机制与仿生金属配合物催化剂的发展,从配体类型的角度阐述当前所实现的C—H键不对称氧化的一些反应实例.

本文引用格式

孙强盛 , 孙伟 . 仿生金属配合物催化的C(sp3)—H键不对称氧化反应研究进展[J]. 有机化学, 2020 , 40(11) : 3686 -3696 . DOI: 10.6023/cjoc202006008

Abstract

C—H oxidation represents one of the most important reactions in organic chemistry. In particular, asymmetric C—H oxidation, which can directly convert simple alkanes into chiral alcohols, ketones, aldehydes and so on, provides more economic and efficient access to the synthesis of complex molecules. Although increasing efforts have been devoted to this area, asymmetric C—H oxidation is still far away from the goal due to the inert nature of C—H and the subtle stereo-difference of C—H bonds. The factors that dictate the selectivity of asymmetric C—H oxidation, mechanism of the C—H oxidation catalyzed by enzyme and some successful examples achieved by biomimetic metal complexes bearing various ligands are reviewed.

参考文献

[1] (a) Katsuki, T. Comprehensive Asymmetric Catalysis I-III:C-H Oxidation, Eds.:Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., 1999, p. 791.
(b) Costas, M. Coord. Chem. Rev. 2011, 255, 2912.
(c) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362.
(d) Zhou, M.; Crabtree, R. H. Chem. Soc. Rev. 2011, 40, 1875.
(e) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930(in Chinese). (钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.)
(f) Wu, J.; Zhu, J.; Li, H.; Wu, C.; Shen, R.; Yu, L. Chin. J. Org. Chem. 2019, 39, 3328(in Chinese). (吴锦雯, 朱佳雯, 李慧, 吴春雷, 沈润溥, 余乐茂, 有机化学, 2019, 39, 3328.)
[2] (a) Li, G.; Zhang, L. Chin. J. Org. Chem. 1985, 5, 27(in Chinese). (李广年, 张良辅, 有机化学, 1985, 5, 27.)
(b) Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2014, 16, 1108.
(c) Chen, J.; Lutz, M.; Milan, M.; Costas, M.; Otte, M.; Klein Gebbink, R. J. M. Adv. Synth. Catal. 2017, 359, 2590.
(d) Dantignana, V.; Milan, M.; Cusso, O.; Company, A.; Costas, M.; Bietti, M. ACS Cent. Sci. 2017, 3, 1350.
(e) Milan, M.; Costas, M.; Salamone, M.; Bietti, M. Acc. Chem. Res. 2018, 51, 1984.
(f) Wang, W.; Xu, D.; Sun, Q.; Sun, W. Chem.-Asian J. 2018, 13, 2458.
(g) White, M. C.; Zhao, J. J. Am. Chem. Soc. 2018, 140, 13988.
[3] (a) Guo, M.; Corona, T.; Ray, K.; Nam, W. ACS Cent. Sci. 2019, 5, 13.
(b) Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. J. Am. Chem. Soc. 2014, 136, 13942.
(c) Yin, G. Acc. Chem. Res. 2013, 46, 483.
(d) Que, L. Jr.; Tolman, W. B. Nature 2008, 455, 333.
[4] Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC press, Boca Raton, 2003.
[5] Asensio, G.; Castellano, G.; Mello, R.; González Núñez, M. E. J. Org. Chem. 1996, 61, 5564.
[6] Chen, M. S.; White, M. C. Science 2007, 318, 783.
[7] Asensio, G.; González Núñez, M. E.; Bernardini, C. B.; Mello, R.; Adam, W. J. Am. Chem. Soc. 1993, 115, 7250.
[8] Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 12796.
[9] Luo, F. Chin. J. Org. Chem. 2019, 39, 3084(in Chinese). (罗飞华, 有机化学, 2019, 39, 3084.)
[10] Tenaglia, A.; Terrenova, E.; Waegell, B. J. Org. Chem. 1992, 57, 5523.
[11] Gómez, L.; Garcia-Bosch, I.; Company, A.; Benet-Buchholz, J.; Polo, A.; Sala, X.; Ribas, X.; Costas, M. Angew. Chem., Int. Ed. 2009, 48, 5720.
[12] Chen, K.; Eschenmoser, A.; Baran, P. S. Angew. Chem., Int. Ed. 2009, 48, 9705.
[13] Du, X.; Houk, K. N. J. Org. Chem. 1998, 63, 6480.
[14] (a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.
(b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947.
(c) Jiang, Y.; Li, S. Chin. J. Org. Chem. 2018, 38, 2307(in Chinese). (蒋媛媛, 李盛英, 有机化学, 2018, 38, 2307.)
[15] (a) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932.
(b) Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. Chem. Rev. 2005, 105, 2227.
[16] (a) Groves, J. T.; Viski, P. J. Am. Chem. Soc. 1989, 111, 8537.
(b) Groves, J. T.; Viski, P. J. Org. Chem. 1990, 55, 3628.
[17] Gross, Z.; Ini, S. Org. Lett. 1999, 1, 2077.
[18] Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che, C.-M. Chem. Commun. 1999, 2441.
[19] Srour, H.; Le Maux, P.; Simonneaux, G. Inorg. Chem. 2012, 51, 5850.
[20] Maux, P. L.; Srour, H. F.; Simonneaux, G. Tetrahedron 2012, 68, 5824.
[21] Frost, J. R.; Huber, S. M.; Breitenlechner, S.; Bannwarth, C.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 691.
[22] (a) Fackler, P.; Berthold, C.; Voss, F.; Bach, T. J. Am. Chem. Soc. 2010, 132, 15911.
(b) Fackler, P.; Huber, S. M.; Bach, T. J. Am. Chem. Soc. 2012, 134, 12869.
[23] Burg, F.; Gicquel, M.; Breitenlechner, S.; Pöthig, A.; Bach, T. Angew. Chem., Int. Ed. 2018, 57, 2953.
[24] Burg, F.; Breitenlechner, S.; Jandl, C.; Bach, T. Chem. Sci. 2020, 11, 2121.
[25] (a) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189.
(b) Bhatia, B.; Punniyamurthy, T.; Iqbal, J. In Asymmetric Oxidation Reactions, Ed.:Katsuki, T., Oxford University Press, New York, 2001, p. 1~15.
(c) Matsumoto, K.; Saito, B.; Katsuki, T. Chem. Commun. 2007, 3619.
(d)Fan, Q.-H.; Ding, K. Top. Organomet. Chem. 2011, 36, 207.
(e) Shaw, S.; White, J. D. Chem. Rev. 2019, 119, 9381.
[26] Hamachi, K.; Irie, I.; Katsuki, T. Tetrahedron Lett. 1996, 37, 4979.
[27] Miyafuji, A.; Katsuki, T. Tetrahedron 1998, 54, 10339.
[28] Punniyamurthy, T.; Miyafuji, A.; Katsuki, T. Tetrahedron Lett. 1998, 39, 8295.
[29] Murahashi, S. I.; Noji, S.; Komiya, N. Adv. Synth. Catal. 2004, 346, 195.
[30] Murahashi, S.; Noji, S.; Hirabayashi, T.; Komiya, N. Tetrahedron:Asymmetry 2005, 16, 3527.
[31] Milan, M.; Bietti, M.; Costas, M. ACS Cent. Sci. 2017, 3, 196.
[32] (a) Mas-Ballesté, R.; Que, L. Jr. J. Am. Chem. Soc. 2007, 129, 15964.
(b) Lyakin, O. Y.; Ottenbacher, R. V.; Bryliakov, K. P.; Talsi, E. P. ACS Catal. 2012, 2, 1196.
[33] (a) Du, J.; Miao, C.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. ACS Catal. 2018, 8, 4528.
(b) Li, X.-X.; Guo, M.; Qiu, B.; Cho, K.-B.; Sun, W.; Nam, W. Inorg. Chem. 2019, 58, 14842.
[34] Milan, M.; Bietti, M.; Costas, M. Org. Lett. 2018, 20, 2720.
[35] Talsi, E. P.; Samsonenko, D. G.; Ottenbacher, R. V.; Bryliakov, K. P. ChemCatChem 2017, 9, 4580.
[36] Sun, W.; Sun, Q. Acc. Chem. Res. 2019, 52, 2370.
[37] (a) Wang, B.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Chem.-Eur. J. 2012, 18, 6750.
(b) Wang, B.; Wang, S.; Xia, C.; Sun, W. Chem.-Eur. J. 2012, 18, 7332.
(c) Wu, M.; Wang, B.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2009, 11, 3622.
(d) Miao, C.; Wang, B.; Wang, Y.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. J. Am. Chem. Soc. 2016, 138, 936.
(e) Shen, D.; Qiu, B.; Xu, D.; Miao, C.; Xia, C.; Sun, W. Org. Lett. 2016, 18, 372.
(f) Wang, W.; Sun, Q.; Xia, C.; Sun, W. Chin. J. Catal. 2018, 39, 1463.
[38] Qiu, B.; Xu, D.; Sun, Q.; Miao, C.; Lee, Y.-M.; Li, X.-X.; Nam, W.; Sun, W. ACS Catal. 2018, 8, 2479.
[39] Qiu, B.; Xu, D.; Sun, Q.; Lin, J.; Sun, W. Org. Lett. 2019, 21, 618.
[40] Cianfanelli, M.; Olivo, G.; Milan, M.; Klein Gebbink, R. J. M.; Ribas, X.; Bietti, M.; Costas, M. J. Am. Chem. Soc. 2020, 142, 1584.
文章导航

/