研究论文

水相中可见光催化卤代芳烃羟基化反应

  • 许秀枝 ,
  • 张帆 ,
  • 黄胜 ,
  • 张志强 ,
  • 柯方
展开
  • a 福建医科大学药学院 福建省天然药物药理学重点实验室 福州 350004;
    b 福建医科大学附属第一医院肿瘤内科 福州 350005

收稿日期: 2020-05-02

  修回日期: 2020-06-12

  网络出版日期: 2020-07-17

基金资助

福建省自然科学基金(Nos.2016Y9052,2016Y9053,2017J01820,2017-1-64)资助项目.

Visible-Light Promoted Hydroxylation of Aryl Halides under Mild Reaction Conditions in Neat Water

  • Xu Xiuzhi ,
  • Zhang Fan ,
  • Huang Sheng ,
  • Zhang Zhiqiang ,
  • Ke Fang
Expand
  • a Fujian Provincial Key Laboratory of Natural Medicine Pharmacolog, Department of Pharmacy, Fujian Medical University, Fuzhou 350004;
    b The First Affiliated Hospital of Fujian Medical University Oncology, Fuzhou 35000

Received date: 2020-05-02

  Revised date: 2020-06-12

  Online published: 2020-07-17

Supported by

Project supported by the Natural Science Foundation of Fujian Province (Nos. 2016Y9052, 2016Y9053, 2017J01820, 2017-1-64).

摘要

通过在可见光下卤代芳烃的羟基化反应合成一系列苯酚类化合物.反应用单质碘作光催化剂,在室温下反应获得较好收率的产物,生成目标产物最高产率可达到92%,该体系对氯代芳烃同样具有较好的催化活性.此方法具有便宜、易处理、对环境无污染的优点,为酚类化合物的合成提供了一种简便经济的方法.运用此策略,以5-乙酰-4-溴-2-甲氧基苄基二异丙基氨基二硫代甲酸酯合成的5-乙酰-4-羟基-2-甲氧基苄基二异丙基氨基二硫代甲酸酯,具有明显的抗增殖作用.

本文引用格式

许秀枝 , 张帆 , 黄胜 , 张志强 , 柯方 . 水相中可见光催化卤代芳烃羟基化反应[J]. 有机化学, 2020 , 40(9) : 2912 -2918 . DOI: 10.6023/cjoc202005004

Abstract

A novel visible-light-introduced reaction for the construction of phenols via hydroxylation of aryl halides has been developed. The reaction has been achieved in high yield under mild conditions by using iodine as photocatalyst, which is cheap, easy to handle and environmentally friendly. A variety of phenols were obtained in up to 92% yields. Moreover, aryl chlorides were also successfully employed as substrates, affording the target phenols in good isolated yields. It might provide promising protocol for the synthesis of phenol derivatives. Its application was performed by the synthesis of 5-acetyl-4-hy-droxy-2-methoxybenzyl diisopropylcarbamodithioate, which displayed significant anti-proliferation effect.

参考文献

[1] (a) Kwong, H.-K.; Lo, P.-K.; Yiu, S.-M.; Hirao, H.; Lau, K.-C.; Lau, T.-C. Angew. Chem.. Int. Ed. 2017, 56, 12260.
(b) Bracegirdle, S.; Anderson, E. A. Chem. Commun. 2010, 46, 3454.
(c) Ohwada, A.; Nara, S.; Sakamoto, T.; Kikugawa, Y. J. Chem. Soc.. Perkin Trans. 12001, 3064.
(d) Rayment, E. J.; Summerhill, N.; Anderson, E. A. J. Org. Chem. 2012, 77, 7052.
(e) Morimoto, Y.; Bunno, S.; Fujieda, N.; Sugimoto, H.; Itoh, S. J. Am. Chem. Soc. 2015, 137, 5867.
(f) Yin, W.; Pan, X.; Leng, W.; Chen, J.; He, H. Green Chem. 2019, 21, 4614.
[2] (a) Nakayama, M.; Fukuoka, Y.; Nozaki, H.; Matsuo, A.; Hayashi, S. Chem. Lett. 1980, 9, 1243.
(b) Rappoport, Z. The Chemistry of Phenols, Wiley, Hoboken, N. J., 2003.
[3] (a) Schmidt, R. J. Appl. Catal. A 2005, 280, 89.
(b) Fyfe, C. A. The Chemistry of the Hydroxyl Group, Vol. 1, Ed.:Patai, S., Wiley-Interscience, New York, 1971, pp. 83~127.
[4] Cornils, B.; Herrmann, W. A. J. Catal. 2003, 216, 23.
[5] Taddei, M.; Ricci, A. Synthesis 1986, 1986, 633.
[6] (a) Damkaci, F.; Sigindere, C.; Sobiech, T.; Vik, E.; Malone, J. Tetrahedron Lett. 2017, 58, 3559.
(b) Ding, G.; Han, H.; Jiang, T.; Wu, T.; Han, B. Chem. Commun. 2014, 50, 9072.
(c) Ghiasbeigi, E.; Soleiman-Beigi, M. ChemistrySelect 2019, 4, 3611.
(d) Mketo, N.; Jordaan, H. J. L.; Jordaan, A.; Swarts, A. J.; Mapolie, S. F. Eur. J. Inorg. Chem. 2016, 3781.
(e) Wang, D.; Kuang, D.; Zhang, F.; Tang, S.; Jiang, W. Eur. J. Org. Chem. 2014, 315.
(f) Xia, S.; Gan, L.; Wang, K.; Li, Z.; Ma, D. J. Am. Chem. Soc. 2016, 138, 13493.
(g) Shendage, S. S. J. Chem. Sci. 2018, 130, 13.
(h) Cyr, P.; Charette, A. B. Synlett 2014, 25, 1409.
(i) Ramu, R.; Wanna, W. H.; Janmanchi, D.; Tsai, Y.-F.; Liu, C.-C.; Mou, C.-Y.; Yu, S.-S. Mol. Catal. 2017, 441, 114.
[7] Fier, P. S.; Maloney, K. M. Org. Lett. 2017, 19, 3033.
[8] Zhao, P.; Zhang, Y.; Li, D.; Cui, H.; Zhang, L. Chin. J. Catal. 2018, 39, 334.
[9] (a) Amani, J.; Alam, R.; Badir, S.; Molander, G. A. Org. Lett. 2017, 19, 2426.
(b) Li, Z.; Song, H.; Guo, R.; Zuo, M.; Hou, C.; Sun, S.; He, X.; Sun, Z.; Chu, W. Green Chem. 2019, 21, 3602.
(c) Chen, D.; Liu, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Org. Chem. 2019, 39, 3353(in Chinese). (陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学, 2019, 39, 3353.)
(d) Wang, D.; Zhang, L.; Luo, S. Chin. J. Chem. 2018, 36, 311.
[10] (a) Cai, Y.-M.; Xu, Y.-T.; Zhang, X.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 8479.
(b) Hou, T.; Lu, P.; Li, P. Tetrahedron Lett. 2016, 57, 2273.
(c) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.
(d) Xiao, L.; Li, J.; Wang, T. Acta Chim. Sinica 2019, 77, 841(in Chinese). (肖丽, 刘嘉恒, 王挺, 化学学报, 2019, 77, 841).
(e) Wang, H.; Wu, P.; Zhao, X.; Zeng, J.; Wang, Q. Acta Chim. Sinica 2019, 77, 231(in Chinese). (王浩, 吴品儒, 赵祥, 曾静, 万谦, 化学学报, 2019, 77, 231).
[11] Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 5248.
[12] (a) Zablocka, M.; Hameau, A.; Caminade, A.-M.; Majoral, J.-P. Adv. Synth. Catal. 2010, 352, 2341.
(b) Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. Org. Chem. Front. 2018, 5, 749.
(c) Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Chem. Rev. 2018, 118, 679.
(d) Song, G.-L.; Zhang, Z.; Da, Y.-X.; Wang, X.-C. Tetrahedron 2015, 71, 8823.
[13] Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 5248.
[14] (a) Ke, F.; Xu, Y.; Zhu, S.; Lin, X.; Lin, C.; Zhou, S.; Su, H. Green Chem. 2019, 21, 4329.
(b) Ke, F.; Liu, C.; Zhang, P.; Xu, J.; Chen, X. Synth. Commun. 2018, 48, 3089.
[15] (a) Tian, Y.-E.; Sun, D.; Han, X.-X.; Yang, J.-M.; Zhang, S.; Feng, N.-N.; Zhu, L.-N.; Xu, Z.-Y.; Che, Z.-P.; Liu, S.-M.; Lin, X.-M.; Jiang, J.; Chen, G.-Q. J. Asian Nat. Prod. Res. 2020, Doi:10.1080/10286020.2020.1718116.
(b) Peng, Y.; Zheng, X.; Fan, Z.; Zhou, H.; Zhu, X.; Wang, G.; Liu, Z. Phytomedicine 2020, 68, Article 153151.
[16] (a) Cheng, C.-S.; Chen, J.-X; Tang, J.; Geng, Y.-W.; Zheng, L.; Lv, L.-L.; Chen, L.-Y.; Chen, Z. Cancer Manage. Res. 2020, 12, 641.
(b) Huang, W.; Ding, Y.; Miao, Y.; Liu, M.-Z.; Li, Y.; Yang, G.-F. Eur. J. Med. Chem. 2009, 44, 3687.
[17] (a) Cai, Y.-M.; Xu, Y.-T.; Zhang, X. Gao, W.-X.; Huang, X.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 10169.
(b) Jung, S.-H.; Yeon, J.-W.; Hong, S. Y.; Kang, Y.; Song, K. Nucl. Sci. Eng. 2015, 181, 191.
(c) Banerjee, A.; Lei, Z.; Ngal, M.-Y. Synthesis 2019, 51, 303.
(d) Liu, W.; Li, J.; Huang, C.-Y.; Li, C.-J. Angew. Chem.. Int. Ed. 2020, 59, 1786.
(e) Li, L.; Liu, W.; Zeng, H.; Mu, X.; Cosa, G.; Mi, Z.; Li, C.-J. J. Am. Chem. Soc. 2015, 137, 8328.
[18] (a) González-Calderón, D.; González-González, C.-A.; Fuentes-Benítez, A.; Cuevas-Yáñez, E.; Corona-Becerril, D.; González-Romero, C. Helv. Chim. Acta 2014, 97, 965.
(b) Bora, S. J.; Chetia, B. J. Organomet. Chem. 2017, 851, 52.
(c) Reitti, M.; Gurubrahamam, R., Walther, M.; Lindstedt, E.; Olofsson, B. Org. Lett. 2018, 20, 1785.
(d) Sang, D.; Wang, J.; Zheng, Y.; He, J.; Yuan, C.; An, Q.; Tian, J. Synthesis 2017, 49, 2721.
(e) Ghorbani-Choghamarani, A.; Goudarziafshar, H.; Nikoorazm, M.; Naseri Z. Chin. Chem. Lett. 2011, 22, 1431.
(f) Rahimi, J.; Taheri-Ledari, R.; Niksefat, M.; Maleki A. Catal. Commun. 2020, 134, 105850.
(g) Xu, J.; Wang, X.; Shao, C.; Su, D.; Cheng, G..; Hu, Y. Org. Lett. 2010, 12, 1964.
(h) Sodhi, R. K.; Paul, S.; Clark, J. H. Green Chem. 2012, 14, 1649.
(i) Chatterjee, N.; Chowdhury, H.; Sneh, K.; Goswami A. Tetrahedron Lett. 2015, 56, 172.
(j) Richter, H.; Beckendorf, S.; Mancheño, O. G. Adv. Synth. Catal. 2011, 353, 295.
(k) Sridhar, A.; Rangasamy, R.; Selvaraj, M. New J. Chem. 2019, 43, 17974.
[19] Jing, L.; Wei, J.; Zhou, L.; Li, Z.; Zhou, X. Chem. Commun. 2010, 46, 4767.
文章导航

/