研究论文

多响应锆基金属有机框架荧光传感器对Fe3+,Cr2O72-离子和有机小分子的识别

  • 马学林 ,
  • 韩利民 ,
  • 张骁勇 ,
  • 郝占忠 ,
  • 杨威 ,
  • 张玉恒 ,
  • 王丽
展开
  • a 内蒙古工业大学化工学院 呼和浩特 010051;
    b 包头师范学院化学学院 内蒙古包头 014030

收稿日期: 2020-05-05

  修回日期: 2020-07-01

  网络出版日期: 2020-07-17

基金资助

国家自然科学基金(No.51964041)、内蒙古自然科学基金(Nos.2018BS02009,2019MS02031)、内蒙古教育厅项目(No.NJZY19187)和包头市青年创新人才(No.30324001)资助项目.

A Highly Stable Multi-response Zirconium(IV) Metal-Organic Frameworks for Fluorescence Sensing of Fe3+, Cr2O72- and Organic Small Molecules

  • Ma Xuelin ,
  • Han Limin ,
  • Zhang Xiaoyong ,
  • Hao Zhanzhong ,
  • Yang Wei ,
  • Zhang Yuheng ,
  • Wang Li
Expand
  • a Chemical Engineering College, Inner Mongolia University of Technology, Hohhot 010051;
    b Department of Chemistry, Baotou Teachers'College, Baotou, Inner Mongolia 014030

Received date: 2020-05-05

  Revised date: 2020-07-01

  Online published: 2020-07-17

Supported by

Project supported by the National Natural Science Foundation of China (No. 51964041), the Natural Science Foundation of Inner Mongolia (Nos. 2018BS02009, 2019MS02031), the Education Department Project of Inner Mongolia (No. NJZY19187), and the Young Innovative Talents in Baotou City (No. 30324001).

摘要

以2,2',2''-[(1,3,5)-三嗪-2,4,6-三亚胺基]三苯甲酸(L)和ZrONO3·2H2O为原料,在N,N-二甲基甲酰胺(DMF)/H2O中合成了一种新的锆基金属有机框架荧光传感器(Zr-MOF).系统地研究了Zr-MOF对水溶中的Fe3+和Cr2O72-离子的荧光响应,其猝灭常数(KSV)分别为9.54×104,1.75×104 L·mol-1,检测限(LOD)分别为3.78×10-8,9.12×10-7 mol/L.同时也研究了Zr-MOF对DMF溶液中的丙酮、CCl4和二甲苯的荧光识别,其猝灭常数(KSV)分别为6534.3,4325.7,4025.1 mL-1,检测限(LOD)分别为1.09×10-6,2.73×10-5和3.17×10-5 mL.通过FTIR、1H NMR、TAG、PXRD和元素分析等对Zr-MOF进行表征.结果表明,Zr-MOF在沸水和不同pH值溶液中,结构具有较高的稳定性,但其荧光强度在不同的pH值溶液中呈现一定的变化规律.水样和尿样检测证明,Zr-MOF可作为荧光传感器应用到实际溶液检测中.模拟实验表明,Zr-MOF对丙酮,CCl4和二甲苯有较高的选择性和灵敏度.

本文引用格式

马学林 , 韩利民 , 张骁勇 , 郝占忠 , 杨威 , 张玉恒 , 王丽 . 多响应锆基金属有机框架荧光传感器对Fe3+,Cr2O72-离子和有机小分子的识别[J]. 有机化学, 2020 , 40(9) : 2938 -2948 . DOI: 10.6023/cjoc202005010

Abstract

A new zirconium(IV) metal-organic framework (Zr-MOF) based on tricarboxylate ligands, namely ZrL▪2H2O (L=2,2',2''-([1,3,5]-triazine-2,4,6-triimino)tribenzoic acid)) has been designed and synthesized. It can be served as a platform of multi-responsive fluorescence sensor for Fe3+ and Cr2O72- in water. The Stern-Volmer constants (KSV) are 9.54×104, 1.75×104 L·mol-1, and the limits of detection are 3.78×10-8, 9.12×10-7 mol/L, respectively. Meanwhile, it can also be used as a multi-response fluorescence probe to detect acetone, CCl4 and xylene in N,N-dimethylformamide (DMF) solution. The Stern-Volmer constants (KSV) are 6534.3, 4325.7, 4025.1 mL-1, and the limits of detection are 1.09×10-6, 2.73×10-5, 3.17×10-5 mL, respectively. The Zr-MOF was characterized by FTIR,1H NMR, powder X-ray diffraction (PXRD), thermo gravimetric analysis (TGA) and elemental analysis. Interestingly, the Zr-MOF has the high water stability and pH stability, but its fluorescence intensity will show certain change law in the range of pH 0~14. Water and urine sample application test showed that Zr-MOF had high sensitive detection for Fe3+, and simulated organic solvents test showed that Zr-MOF has high sensitivity and selectivity to acetone, CCl4 and xylene.

参考文献

[1] Qiao, W. Z.; Song, T. Q.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
[2] Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156(in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[3] Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X. T.; Xu, J. L.; Bu, X. H. Chin. J. Chem., 2019, 37, 871.
[4] Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese). (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
[5] Wang, B.; Yang, Q.; Guo, C.; Sun, Y. X.; Xie, L. H.; Li, J. R. ACS Appl. Mater. Interfaces 2017, 9, 10286.
[6] Li, L. N.; Shen, S. S.; Lin, R. Y.; Bai, Y.; Liu, H. W. Chem. Commun. 2017, 53, 9986.
[7] Luo, J.; Liu, B. S.; Cao, C.; Wei, F. Inorg. Chem. Commun. 2017, 76, 18.
[8] Guo, H.; Wu, N.; Xue, R.; Liu, H.; Li, L.; Wang, M. Y.; Yao, W. Q.; Li, Q.; Yang, W. Colloids Surf. A 2020, 585, 124094.
[9] Lv, R.; Chen, Z. H. Y.; Fu, X.; Yang, B. Y.; Li, H.; Su, J.; Gu, W.; Liu, X. J. Solid State Chem. 2018, 259, 67.
[10] Zhang, M. F.; Han, J.; Wu, H. P.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. RSC Adv. 2016, 6, 94622.
[11] Wang, X.; Fan, W. D.; Zhang, M.; Shang, Y. Z.; Wang, Y. T.; Liu, D.; Guo, H. L.; Dai, F. N.; Sun, D. F. Chin. Chem. Lett. 2019, 30, 801.
[12] Huang, W. H.; Ren, J.; Yang, Y. H.; Li, X. M.; Wang, Q.; Jiang, N.; Yu, J. Q.; Wang, F.; Zhang, J. Inorg. Chem. 2019, 58, 1481.
[13] Tang, Y. Y.; Wang, C. J.; Chen, S.; Dai, H. Y. J. Coord. Chem. 2018, 70, 3996.
[14] Zhang, C. H.; Shi, H. Z.; Sun, L. B.; Yan, Y.; Wang, B. L.; Liang, Z. Q.; Wang, L.; Li, J. Y. Crys. Growth Des. 2018, 18, 7683.
[15] Wang, J. H.; Fan, Y. D.; Lee, H. W.; Yi, C. Q.; Cheng, C. M.; Zhao, X.; Yang, M. ACS Appl. Nano Mater. 2018, 1, 3747.
[16] Wang, B.; Yang, Q.; Guo, C.; Sun, Y. X.; Xie, L. H.; Li, J. R. ACS Appl. Mater. Interfaces 2017, 9, 10286.
[17] Gogoi, C.; Yousufuddin, M.; Biswas, S. Dalton Trans. 2019, 48, 1766.
[18] Jia, P.; Wang, Z. H.; Zhang, Y. F.; Zhang, D.; Gao, W. C.; Su, Y.; Li, Y. B.; Yang, C. L. Spectrochim. Acta. Part A 2020, 230, 118084.
[19] Su, Y.; Yu, J. H.; Li, Y. B.; Phua, S. F. Z.; Liu, G. F.; Lim, W. Q.; Yang, X. Z.; Ganguly, R.; Dang, C.; Yang, C. L.; Zhao, Y. L. Commun. Chem. 2018, 54, 1.
[20] Wen, G. X.; Wu, Y. P.; Dong, W. W.; Zhao, J.; Li, D. S.; Zhang, J. Inorg. Chem. 2016, 55, 10114.
[21] Xu, X. Y.; Yan, B. ACS Appl. Mater. Interfaces 2015, 7, 721.
[22] Zhu, S. Y.; Yan, B. Dalton Trans. 2018, 47, 1674.
[23] Chen, J.; Chen, H. Y.; Wang, T. S.; Li, J. F.; Wang, J.; Lu, X. Q. Anal. Chem. 2019, 91, 4331.
[24] Luo, J.; Liu, B. S.; Zhang, X. R.; Liu, R. T. J. Mol. Struct. 2019, 1177, 444.
[25] Gao, X. H.; Gao, Y. Y.; Qi, R. L.; Han, L. M. New J. Chem. 2019, 43, 18377.
[26] Hao, J. N.; Yan, B. Chem. Commun. 2015, 51, 7737.
[27] Wei, N.; Zhang, Y. R.; Han, Z. B. CrystEngComm 2013, 15, 8883.
[28] Wang, X. Q.; Feng, D. D.; Tang, J.; Zhao, Y. D.; Li, J.; Yang, J.; Kim, C. K.; Su, F. Dalton Trans. 2019, 48, 16776.
[29] Yang, S. L.; Yuan, Y. Y.; Sun, P. P.; Lin, T.; Zhang, C. X.; Wang, Q. L. New J. Chem. 2018, 42, 20137.
[30] Yi, K. Y.; Zhang, L. J. Hazard. Mater. 2020, 389, 122141.
[31] Zhang, Q. S.; Wang, J.; Kirillov, A. M.; Dou, W.; Xu, C.; Xu, C. L.; Yang, L. Z.; Fang, R.; Liu, W. S. ACS Appl. Mater. Interfaces 2018, 10, 23976.
[32] Huang, N. H.; Li, R. T.; Fan, C.; Wu, K. Y.; Zhang, Z.; Chen, J. X. J. Inorg. Biochem. 2019, 197, 110690.
[33] Zhao, S. L.; Xiao, J. N.; Zheng, T. X.; Liu, M. Y.; Wu, H. N.; Liu, Z. L. ACS Omega 2019, 4, 16378.
[34] Fan, C.; Lv, X. X.; Tian, M.; Yu, Q. C.; Mao, Y. Y.; Qiu, W. W.; Wang, H.; Liu, G. D. Microchim. Acta 2020, 187, 84.
[35] Ji, G. F.; Gao, X. C.; Zheng, T. X.; Guan, W. H.; Liu, H. T.; Liu, Z. L. Inorg. Chem. 2018, 57, 10525.
[36] Su, Y.; Zhang, D.; Jia, P.; Gao, W. C.; Li, Y. B.; Bai, Z. Y.; Liu, X.; Deng, Q. Y.; Xu, J.; Yang, C. L. Spectrochim. Acta. Part A 2019, 217, 86.
[37] Yang, C. L.; Xu, J.; Zhang, R.; Zhang, Y. F.; Li, Z. X.; Li, Y. W.; Liang, L. Y.; Lu, M. G. Sens. Actuators. B. 2013, 177, 437.
[38] Tang, S. F.; Hou, X. M. Cryst. Growth Des. 2019, 19, 45.
[39] Ding, B.; Liu, S. X.; Cheng, Y.; Guo, C.; Wu, X. X.; Guo, J. H.; Liu, Y. Y.; Li, Y. Inorg. Chem. 2016, 55, 4391.
[40] Sun, N. N.; Yan, B. Dyes Pigm. 2017, 142, 1.
[41] Li, C. R.; Hai, J.; Li, S. L.; Wang, B. D.; Yang, Z. Y. Nanoscale 2018, 10, 8667.
[42] He, H. M.; Zhu, Q. Q.; Li, C. P.; Du, M. Crys. Growth Des. 2019, 19, 694.
[43] Fan, K.; Bao, S. S.; Nie, W. X.; Liao, C.; Zheng, L. M. Inorg. Chem. 2018, 57, 1079.
[44] Tang, Y. L.; Chen, J. M.; Wu, H. F.; Yu, J. P.; Jia, J. L.; Xu, W.; Fu, Y. Y.; He, Q. G.; Cao, H. M.; Cheng, J. G. Dyes Pigm. 2020, 172, 107798.
[45] Cui, Y.; Chen, F.; Yin, X. B. Biosens. Bioelectron. 2019, 135, 208.
[46] Wu, J. X.; Yan, B. J. Colloid Interface Sci. 2017, 504, 197.
[47] Wang, T.; Liu, Q. H.; Gao, Y.; Yang, X. Y.; Yang, W. T.; Dang, S.; Sun, Z. M. Chin. Chem. Lett. 2016, 27, 497.
[48] Weng, H.; Yan, B. Sens. Actuators. B 2016, 28, 702.
[49] Wang, J.; Zha, Q. Q.; Qin, G. X.; Ni, Y. H. Talanta 2020, 2011, 120742.
[50] Xing, P. C.; Wu, D.; Chen, J. S.; Song, J. M.; Mao, C. J.; Gao, Y. H.; Niu, H. L. Analyst 2019, 144, 2656.
[51] Xu, Y. L.; Liu, Y.; Liu, X. H.; Zhao, Y.; Wang, P.; Wang, Z. L.; Sun, W. Y. Polyhedron 2018, 154, 350.
[52] Du, Q. Z.; Wu, P.; Dramou, P.; Chen, R.; He, H. New J. Chem. 2019, 43, 1291.
[53] Ji, S. J.; Ma, W.; Li, X. S.; An, J. D.; Zhang, H. M.; Li, Y.; Du, G. X.; Fei, L.; Lacoste, J. D.; Liu, J. J.; Wu, X. X.; Liu, Y. Y.; Yu, Z. Q.; Ding, B. Dyes Pigm. 2019, 167, 51.
[54] Zhao, X. X.; Wang, S. L.; Zhang, L. Y.; Liu, S. Y.; Yuan, G. Z. Inorg. Chem. 2019, 58, 2444.
[55] Lu, S. Q.; Liu, Y. Y.; Duan, Z. M.; Wang, Z. X.; Li, M. X.; He, X. Cryst. Growth Des. 2018, 18, 4602.
[56] Ye, Y. X.; Huang, C. J.; Yang, J.; Li, Y. S.; Zhuang, Q. X.; Gu, J. L. Microporous Mesoporous Mater. 2019, 284, 36.
[57] Zheng, H. Y.; Lian, X.; Qin, S. J.; Yan, B. ACS Omega 2018, 3, 12513.
[58] Zhang, X.; Xia, T. F.; Jiang, K.; Cui, Y. J.; Yang, Y.; Qian, G. D. J. Solid State Chem. 2017, 253, 277.
[59] El-Sewify, I. M.; Shenashen, M. A.; Shahat, A.; Yamaguchi, H.; Selimm, M. M.; Khalil, M. M. H.; El-Safty, S. A. J. Lumin. 2018, 198, 438.
[60] Li, Y. P.; Zhang, X.; Zhang, L.; Jiang, K.; Cui, Y. G.; Yang, Y.; Qian, G. D. J. Solid State Chem. 2017, 255, 97.
[61] Dalapati, R.; Balaji, S. N.; Trivedi, V.; Khamari, L.; Biswas, S. Sens. Actuators. B 2017, 245, 1039.
[62] SK, M.; Biswas, S. CrystEngComm 2016, 18, 3104.
[63] Xia, C.; Xu, Y.; Cao, M. M.; Liu, Y. P.; Xia, J. F.; Jiang, D. Y.; Zhou, G. H.; Xie, R. J.; Zhang, D. F.; Li, H. L. Talanta 2020, 212, 120795.
[64] Ma, X. L.; Han, L. M.; Zhang, X. Y.; Zhang, Y. H.; Wang, L.; Yang, K.; Ji, J. Chin. J. Org. Chem. 2020, 40, 1745(in Chinese). (马学林, 韩利民, 张骁勇, 张玉恒, 王丽, 杨坤, 冀婕, 有机化学, 2020, 40, 1745.)
[65] Wang, X. Q.; Feng, D. D.; Tang, J.; Zhao, Y. D.; Li, J.; Yang, J.; Kim, C. K.; Su, F. Dalton Trans. 2019, 48, 16776.
文章导航

/