综述与进展

超快速和二维液相色谱手性分离

  • 许瑶 ,
  • 康经武
展开
  • 中国科学院上海有机化学研究所 生命有机化学国家重点实验室 上海 200032

收稿日期: 2020-05-18

  修回日期: 2020-06-29

  网络出版日期: 2020-07-17

基金资助

国家自然科学基金(Nos.21775158,21375140,21175146)资助项目.

Chiral Separation by Ultrafast and Two-Dimensional Liquid Chromatography

  • Xu Yao ,
  • Kang Jingwu
Expand
  • State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032

Received date: 2020-05-18

  Revised date: 2020-06-29

  Online published: 2020-07-17

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21775158, 21375140, 21175146).

摘要

虽然以多糖类手性固定相为标志的手性分离技术已经趋于成熟,但是复杂样品的手性分离仍然面临许多挑战.为此,近年来二维液相色谱手性分离得到了快速发展.二维液相色谱需要第二维色谱分离要足够快,因此又需要发展超快速液相色谱分离技术.超快速液相色谱和二维液相色谱的发展不仅仅提高了手性分离效率,同时也迎合了高通量有机合成技术发展的需求.总结了近年来超快速液相色谱和二维液相色谱在手性分析方面的研究进展,重点讨论了超快速液相色谱手性填料技术的发展和在解决复杂手性样品分析时的策略和应用,最后对超快速和二维液相在高通量有机合成中的应用前景做了展望.

本文引用格式

许瑶 , 康经武 . 超快速和二维液相色谱手性分离[J]. 有机化学, 2020 , 40(11) : 3794 -3801 . DOI: 10.6023/cjoc202005046

Abstract

Although the chiral separation techniques represented by the polysaccharides-based chiral stationary phases are almost matured, the chiral separation for complex samples remains a challenge. To this end, two dimensional liquid chromatography has been developed rapidly. Recently, to achieve the chiral separation with two dimensional liquid chromatoraphy, the development of the ultrafast liquid chromatography has caused considerable attention. The development of ultrafast liquid chromatography and two-dimensional liquid chromatography also caters to the development of high-throughput organic synthesis technology. In this review the recent progress in the chiral separation by the ultrafast and two-dimensional liquid chromatography is summarized. This review focuses on the progress in the techniques of the chiral packing materials for ultrafast chromatography, the chiral separation strategy and its application in complex samples. Finally, the application perspective of ultra-fast and two-dimensional liquid phase in high-throughput organic synthesis techniques is prospected.

参考文献

[1] De Camp, W. H. J. Pharm. Biomed. Anal. 1993, 11, 1167.
[2] Maier, N. M.; Franco, P.; Lindner, W. J. Chromatogr. A 2001, 906, 3.
[3] Hegade, R. S.; Lynen, F. J. Chromatogr. A 2019, 1586, 116.
[4] Pirok, B. W. J.; Stoll, D. R.; Schoenmakers, P. J. Anal. Chem. 2019, 91, 240.
[5] Lorenz, H.; Seidel-Morgenstern, A. Angew. Chem., Int. Ed. 2014, 53, 1218.
[6] Regalado, E. L.; Kozlowski, M. C.; Curto, J. M.; Ritter, T.; Campbell, M. G.; Mazzotti, A. R.; Hamper, B. C.; Spilling, C. D.; Mannino, M. P.; Wan, L.; Yu, J. Q.; Liu, J.; Welch, C. J. Org. Biomol. Chem. 2014, 12, 2161.
[7] Major, E. R. LC GC Europe 2012, 25, 1.
[8] Mazzeo, J. R.; Neue, U. D.; Kele, M.; Plumb, R. S. Anal. Chem. 2005, 77, 460 A.
[9] Blue, L. E.; Franklin, E. G.; Godinho, J. M.; Grinias, J. P.; Grinias, K. M.; Lunn, D. B.; Moore, S. M. J. Chromatogr. A 2017, 1523, 17.
[10] MacNair, J. E.; Lewis, K. C.; Jorgenson, J. W. Anal. Chem. 1997, 69, 983.
[11] Jorgenson, J. W. Annu. Rev. Anal. Chem. 2010, 3, 129.
[12] Perera, D.; Tucker, J. W.; Brahmbhatt, S.; Helal, C. J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N. W. Science 2018, 359, 429.
[13] Robbins, D. W.; Hartwig, J. F. Science 2011, 333, 1423.
[14] Barhate, C. L.; Wahab, M. F.; Tognarelli, D. J.; Berger, T. A.; Armstrong, D. W. Anal. Chem. 2016, 88, 8664.
[15] Ismail, O. H.; Ciogli, A.; Villani, C.; De Martino, M.; Pierini, M.; Cavazzini, A.; Bell, D. S.; Gasparrini, F. J. Chromatogr. A 2016, 1427, 55.
[16] Patel, D. C.; Breitbach, Z. S.; Wahab, M. F.; Barhate, C. L.; Armstrong, D. W. Anal. Chem. 2015, 87, 9137.
[17] Regalado, E. L.; Welch, C. J. J. Sep. Sci. 2015, 38, 2826.
[18] Wahab, M. F.; Wimalasinghe, R. M.; Wang, Y.; Barhate, C. L.; Patel, D. C.; Armstrong, D. W. Anal. Chem. 2016, 88, 8821.
[19] Welch, C. J.; Regalado, E. L. J. Sep. Sci. 2014, 37, 2552.
[20] Kotoni, D.; Ciogli, A.; Molinaro, C.; D'Acquarica, I.; Kocergin, J.; Szczerba, T.; Ritchie, H.; Villani, C.; Gasparrini, F. Anal. Chem. 2012, 84, 6805.
[21] Barhate, C. L.; Wahab, M. F.; Breitbach, Z. S.; Bell, D. S.; Armstrong, D. W. Anal. Chim. Acta 2015, 898, 128.
[22] Ismail, O. H.; Ciogli, A.; Villani, C.; De Martino, M.; Pierini, M.; Cavazzini, A.; Bell, D. S.; Gasparrini, F. J. Chromatogr. A 2016, 1427, 55.
[23] Kirkland, J. J.; Langlois, T. J.; DeStefano, J. J. Am. Lab. 2007, 39, 18.
[24] Gritti, F.; Leonardis, I.; Abia, J.; Guiochon, G. J. Chromatogr. A 2010, 1217, 3819.
[25] Guiochon, G.; Gritti, F. J. Chromatogr. A 2011, 1218, 1915.
[26] Hayes, R.; Ahmed, A.; Edge, T.; Zhang, H. J. Chromatogr. A 2014, 1357, 36.
[27] Jandera, P.; Hájek, T.; Staňková, M. Anal. Bioanal. Chem. 2015, 407, 139.
[28] Tanaka, N.; McCalley, D. V. Anal. Chem. 2016, 88, 279.
[29] Reischl, R. J.; Hartmanova, L.; Carrozzo, M.; Huszar, M.; Fruhauf, P.; Lindner, W. J. Chromatogr. A 2011, 1218, 8379.
[30] Lomsadze, K.; Jibuti, G.; Farkas, T.; Chankvetadze, B. J. Chromatogr. A 2012, 1234, 50.
[31] Kharaishvili, Q.; Jibuti, G.; Farkas, T.; Chankvetadze, B. J. Chromatogr. A 2016, 1467, 163.
[32] Berger, T. A. J. Chromatogr. A 2017, 1510, 82.
[33] Bezhitashvili, L.; Bardavelidze, A.; Mskhiladze, A.; Gumustas, M.; Ozkan, S. A.; Volonterio, A.; Farkas, T.; Chankvetadze, B. J. Chromatogr. A 2018, 1571, 132.
[34] D'Orazio, G.; Kakava, R.; Volonterio, A.; Fanali, S.; Chankvetadze, B. Electrophoresis 2017, 38, 1932.
[35] Mao, X. J.; Li, J.; Liu, D.; Qiao, T.; Ma, L.; Sun, X.; Xu, L.; Shi, Z. G. Talanta 2018, 178, 583.
[36] Kucerova, G.; Kalikova, K.; Tesarova, E. Chirality 2017, 29, 239.
[37] Roy, D.; Armstrong, D. W. J. Chromatogr. A 2019, 1605.
[38] Patel, D. C.; Breitbach, Z. S.; Wahab, M. F.; Barhate, C. L.; Armstrong, D. W. Anal. Chem. 2015, 87, 9137.
[39] Wahab, M. F.; Wimalasinghe, R. M.; Wang, Y.; Barhate, C. L.; Patel, D. C.; Armstrong, D. W. Anal. Chem. 2016, 88, 8821.
[40] Guo, H.; Wahab, M. F.; Berthod, A.; Armstrong, D. W. J. Pharm. Anal. 2018, 8, 324.
[41] Franzini, R.; Ciogli, A.; Gasparrini, F.; Ismail, O. H.; Villani, C. In Chiral Analysis, Elsevier Science, Rome, Italy, 2018, pp. 607~629.
[42] West, C. TrAC, Trends Anal. Chem. 2019, 120.
[43] Speybrouck, D.; Lipka, E. J. Chromatogr. A 2016, 1467, 33.
[44] Biba, M.; Regalado, E. L.; Wu, N.; Welch, C. J. J. Chromatogr. A 2014, 1363, 250.
[45] Patel, D. C.; Breitbach, Z. S.; Yu, J.; Nguyen, K. A.; Armstrong, D. W. Anal. Chim. Acta 2017, 963, 164.
[46] Berger, T. A. J. Chromatogr. A 2016, 1459, 136.
[47] Li, D. Y.; Wu, X.; Hao, F. L.; Yang, Y.; Chen, X. M. Chin. J. Chromatogr. 2016, 34, 80(in Chinese). (李冬艳, 吴锡, 郝芳丽, 杨洋, 陈小明, 色谱, 2016, 34, 80.)
[48] Heiland, J. J.; Geissler, D.; Piendl, S. K.; Warias, R.; Belder, D. Anal. Chem. 2019, 91, 6134.
[49] Zhang, W. H.; Xie, W.; Hou, J. B.; Chen, Q. K.; Li, S. M.; Zhu, Z. L.; Zou, X. Q; Xu, D. M. Chin. J. Chromatogr. 2019 37, 1356(in Chinese). (张文华, 谢文, 侯建波, 陈钦可, 李淑敏, 祝泽龙, 邹学权, 徐敦明, 色谱, 2019, 37, 1356.)
[50] Yang, F.; Tang, G.; Liu, S.; Fan, Z.; Wang, Y.; Deng, H.; Bian, Z.; Li, Z. Chirality 2019, 31, 353.
[51] Tao, Y.; Zheng, Z.; Yu, Y.; Xu, J.; Liu, X.; Wu, X.; Dong, F.; Zheng, Y. Food Chem. 2018, 241, 32.
[52] Zhang, X.; Zhao, Y.; Cui, X.; Wang, X.; Shen, H.; Chen, Z.; Huang, C.; Meruva, N.; Zhou, L.; Wang, F.; Wu, L.; Luo, F. J. Chromatogr. A 2018, 1581-1582, 144.
[53] León-González, M. E.; Rosales-Conrado, N.; Pérez-Arribas, L. V.; Guillén-Casla, V. Biomed. Chromatogr. 2014, 28, 59.
[54] D'Atri, V.; Fekete, S.; Clarke, A.; Veuthey, J. L.; Guillarme, D. Anal. Chem. 2019, 91, 210.
[55] Barhate, C. L.; Joyce, L. A.; Makarov, A. A.; Zawatzky, K.; Bernardoni, F.; Schafer, W. A.; Armstrong, D. W.; Welch, C. J.; Regalado, E. L. Chem. Commun. 2017, 53, 509.
[56] Barhate, C. L.; Regalado, E. L.; Contrella, N. D.; Lee, J.; Jo, J.; Makarov, A. A.; Armstrong, D. W.; Welch, C. J. Anal. Chem. 2017, 89, 3545.
[57] Ianni, F.; Sardella, R.; Lisanti, A.; Gioiello, A.; Cenci Goga, B. T.; Lindner, W.; Natalini, B. J. Pharm. Biomed. Anal. 2015, 116, 40.
[58] Rao, R. N.; Kumar, K. N.; Shinde, D. D. J. Pharm. Biomed. Anal. 2010, 52, 398.
[59] Venkatramani, C. J.; Al-Sayah, M.; Li, G.; Goel, M.; Girotti, J.; Zang, L.; Wigman, L.; Yehl, P.; Chetwyn, N. Talanta 2016, 148, 548.
[60] Woiwode, U.; Neubauer, S.; Lindner, W.; Buckenmaier, S.; Lämmerhofer, M. J. Chromatogr. A 2018, 1562, 69.
[61] Woiwode, U.; Reischl, R. J.; Buckenmaier, S.; Lindner, W.; Lämmerhofer, M. Anal. Chem. 2018, 90, 7963.
[62] Iguiniz, M.; Corbel, E.; Roques, N.; Heinisch, S. J. Pharm. Biomed. Anal. 2018, 159, 237.
[63] Venkatramani, C. J.; Al-Sayah, M.; Li, G.; Goel, M.; Girotti, J.; Zang, L.; Wigman, L.; Yehl, P.; Chetwyn, N. Talanta 2016, 148, 548.
[64] Barhate, C. L.; Regalado, E. L.; Contrella, N. D.; Lee, J.; Jo, J.; Makarov, A. A.; Armstrong, D. W.; Welch, C. J. Anal. Chem. 2017, 89, 3545.
[65] Bester, K.; Vorkamp, K. Anal Bioanal Chem 2013, 405, 6519.
[66] Woiwode, U.; Reischl, R. J.; Buckenmaier, S.; Lindner, W.; Lammerhofer, M. Anal. Chem. 2018, 90, 7963.
[67] Schiller, D. S.; Fung, H. B. Clin. Ther. 2007, 29, 1862.
[68] Xu, F.; Xu, Y.; Liu, G.; Zhang, M.; Qiang, S.; Kang, J. J Chromatogr. A 2020, 460845.
文章导航

/